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1. The Project 

 

1.1 Preface 

The MERCURY project – “Modeling the European power sector evolution: low-carbon 
generation technologies (renewables, CCS, nuclear), the electric infrastructure and 
their role in the EU leadership in climate policy” is a H2020-MSCA Marie Skłodowska-
Curie 2015 Global Fellowship carried out by the Fellow Samuel Carrara. 

The Beneficiary is Fondazione Eni Enrico Mattei (FEEM), Milan, Italy. The outgoing host 
is the Renewable & Appropriate Energy Laboratory (RAEL) of the University of 
California, Berkeley (UC Berkeley). The project Supervisor at FEEM was Prof. Massimo 
Tavoni until July 2018 and Prof. Manfred Hafner afterwards, while the Supervisor at 
UC Berkeley is Prof. Daniel M. Kammen. 

The project lasted two years. It started on January 16, 2017 and it finished on 
January 15, 2019. The first year was dedicated to the outgoing phase at UC Berkeley, 
while the second year was dedicated to the return phase at FEEM. 

 

1.2 Proposal Abstract 

The reduction of greenhouse gas emissions is a vital target for the coming decades. 
From a technology perspective, power generation is the largest responsible for CO2 
emissions, therefore great mitigation efforts will be required in this area. From a policy 
perspective, it is common opinion that the European Union is and will remain leader in 
implementing clean policies. 

Basing on these considerations, the power sector and the European Union will be the 
two key actors of this project. The main tool adopted in this work will be WITCH, the 
Integrated Assessment Model (IAM) developed at Fondazione Eni Enrico Mattei 
(FEEM). 

The description of the power generation sector in WITCH is quite detailed, but needs 
to be integrated, especially as far as the electric infrastructure downstream the power 
generation system is concerned. In the first half of the project, developed at the 
outgoing host, the modeling of the electric sector will thus be completed and refined. 
In particular, four main aspects need to be assessed: i) system integration (i.e. the 
issues related to the non-negligible penetration of intermittent renewables in the grid), 
ii) electricity storage, iii) electrical grid, and iv) electricity trade. 

In the second half of the project, developed at the return host, the improved WITCH 
model will be employed in scenario assessment calculations. 



 

MERCURY – MODELING THE EUROPEAN POWER SECTOR EVOLUTION: LOW-

CARBON GENERATION TECHNOLOGIES (RENEWABLES, CCS, NUCLEAR), THE 

ELECTRIC INFRASTRUCTURE AND THEIR ROLE IN THE EU LEADERSHIP IN 

CLIMATE POLICY 

PROJECT NO 706330  

DELIVERABLE NO. 2.1 

 

 

3 

 

 

 

Firstly, the prospects in Europe of renewables, Carbon Capture and Storage (CCS) and 
nuclear will be analyzed. In particular, attention will be focused not so much on the 
pure technology aspects, but rather on policy issues such as the role of incentives in 
renewable diffusion, the slow CCS deployment, or the effects of the nuclear reactors 
ageing, or of their phase-out. 

Secondly, the focus will move on assessing the role of these technologies (and the 
consequent evolution of the electric infrastructure) according to different mitigation 
scenarios, and in particular considering different levels of global participation in EU-led 
climate mitigation. 

 

 

2. Introduction – Scope of Deliverable 2.1 

 

Deliverable 2.1 refers to the last but one paragraph of the proposal abstract reported 
in Section 1.2, i.e. to Work Package 2, aimed at investigating of the prospects for the 
main low-carbon power technologies in Europe (renewables, CCS, and nuclear) as 
emerging from the present policy context. 

The original title of the deliverable as conceived in the proposal was “Technology 
prospects: EU policy scenario”. The final title is more specific, but essentially the main 
focus does not change, even if the new title highlights an extension of the geographical 
scope: results are not presented for the European Union only, but also at a global level, 
essentially for the sake of comparison. 

The first part of the activity focuses on renewables. Indeed there has been a slight 
deviation from the original plan here. 

Before the beginning of the MERCURY project, in fact, the Fellow started working as 
coordinator of a multi-model exercise focused on learning in Integrated Assessment 
Models in the context of the FP7 ADVANCE project1. In IAMs, the cost evolution of 
renewable technologies is normally modeled through a learning curve, which describes 
the capital cost reductions deriving from dedicated R&D investments and/or from the 
experience gained through capacity deployment (only the latter applies to this 
exercise). The key parameter is the learning factor, which translates investments and 
capacity deployment into the actual cost reduction. The objective of the exercise is to 
explore different cost pathways associated to different learning rates, analyzing how 

                                                      
1
 http://www.fp7-advance.eu/ 



 

MERCURY – MODELING THE EUROPEAN POWER SECTOR EVOLUTION: LOW-

CARBON GENERATION TECHNOLOGIES (RENEWABLES, CCS, NUCLEAR), THE 

ELECTRIC INFRASTRUCTURE AND THEIR ROLE IN THE EU LEADERSHIP IN 

CLIMATE POLICY 

PROJECT NO 706330  

DELIVERABLE NO. 2.1 

 

 

4 

 

 

 

they influence the solar PV penetration in the electricity mix and the re-arrangement 
of the electricity mix itself (primarily, the impact on the other renewables). 

This activity – which involves four IAMs, including WITCH of course – could not be 
completed within the end of ADVANCE. As one can see, the topic perfectly suits WP2 
of MERCURY, and precisely the part concerning renewables, therefore the Fellow 
decided to absorb this activity in the relevant part of WP2. 

The other two activities, instead, completely adhere to the project proposal. 

CCS has widely been recognized as one of the main low-carbon solutions for the next 
decades, but its actual commercial maturity is yet to come. MERCURY investigates the 
impact of the delayed deployment of this technology from a climate, energy, and 
economic perspective. 

Similarly, nuclear is a power technology which could play a fundamental role in future 
climate change mitigation, but its actual prospects are awkward in many parts of the 
world, especially Europe, and more in general the OECD countries. In this area, in fact, 
many countries revised their development plans after the incident at the Fukushima 
power plant in 2011. At the same time, reactors have been ageing and a considerable 
number are approaching the end of their operational lifetime, therefore huge 
investments would be needed just to maintain the same generation level. In this 
perspective, this task aims at exploring the real prospects of nuclear, also trying to 
understand the economic and policy implications of neglecting this technology in 
addressing climate change. 

A paper has been produced for each of these three topics. The present deliverable is 
essentially the collection of these three papers, attached in the next pages. The 
relevant titles are: 

 Exploring pathways of solar PV learning-by-doing in Integrated Assessment 
Models 

 The techno-economic effects of the delayed deployment of CCS technologies 
on climate change mitigation 

 Reactor ageing and phase-out policies: global and European prospects for 
nuclear power generation 
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Abstract 

 

The capital cost of solar photovoltaics (PV) has constantly decreased over the past decades, and market 

competitiveness is not far now. The literature agrees in predicting further cost decrease in the future, even 

if uncertainty remains on the actual path. Most importantly, it is unclear how reducing costs will translate 

in actual PV penetration in the energy system in the long term. Integrated Assessment Models (IAMs) 

generate low carbon transition scenarios, but typically assume exogenous learning and have not explored 

future ranges of PV cost decline systematically. Here, we report from a multi-model comparison involving 

four IAMs with a twofold objective: i) explore different PV capital cost pathways deriving from different 

assumptions on endogenous learning-by-doing, and ii) assess the impacts that these low cost pathways 

have on the penetration of PV and Variable Renewable Energies (VREs) in the electricity mix. 

Results show that PV penetration in the electricity mix in the long-run (average over the period 2050-2100) 

can range between 10-72% depending on the scenario, but that it is not very sensitive to capital cost, and 

responds asymmetrically to learning rates. Sensitivity of PV penetration to capital cost reduction is 

averagely 0.4 across scenarios. This highlights the importance of non-capital cost factors, most importantly 

system integration, and the competition from alternative low carbon sources, including Carbon Capture 

and Storage (CCS). The diffusion of PV crowds out other variable renewable energy such as wind and 

concentrated solar power, resulting in lowered sensitivity of the penetration of VREs to PV costs. These 

results point to the need to further evaluate how different low carbon alternatives interact when exploring 

low carbon pathways. 

 

mailto:samuel.carrara@feem.it
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Introduction 

In 2015, the Paris Agreement marked the path for climate change mitigation in the coming decades 

(Schellnhuber et al., 2016). Reaching ambitious mitigation goals compatible with the long-term target of 

2°C requires an electrification of the energy sector and a parallel decarbonization of the electricity sector 

(Creutzing et al. , 2017, Capros et al., 2012, and Wei et al., 2013). In this perspective, the importance of 

solar photovoltaics (PV) as a power technology has rapidly grown in the last years, reaching 400 GW of 

global installed capacity in 2017 (SolarPower, 2018), and according to virtually all studies it will play a major 

role in the future energy scenario (Kriegler et al., 2014). One of the most important factors influencing PV 

penetration in the electricity mix is its investment cost. This cost constantly decreased in the past and this 

trend is expected to continue in the next decades (IEA, 2014 and Pietzcker et al., 2014). However, 

substantial uncertainty still remains on the actual future cost evolution and on the consequent impacts on 

PV penetration (Nelson et al., 2012 and Mileva et al., 2013). Indeed, models have regularly underestimated 

the speed of cost decrease of solar PV (Luderer et al., 2017) and, more in general, its share in energy 

projections (Creutzing et al. , 2017). 

Integrated Assessment Models (IAMs) are widely used tools to explore future mitigation pathways and 

capture in a coherent tool the different dimensions of climate change mitigation, involving energy, 

economy, and the environment. In the past years, a consortium of European research teams participated in 

the ADVANCE project (http://www.fp7-advance.eu/), aimed at developing new modeling solutions for 

power sector dynamics, with a particular focus on the challenges of integrating solar and wind technologies 

in the electricity system (Pietzcker et al., 2017). The multi-model exercise conducted in that context 

highlighted once again the paramount role that Variable Renewable Energies (VREs, i.e. wind and solar), 

and especially solar PV, will play in future power systems (Luderer et al., 2017). 

The ADVANCE exercise carried out a sensitivity analysis on the most relevant parameters affecting VRE 

diffusion (e.g. capital costs, resource availability), but did not perform any extensive analysis of the cost 

patterns related to the technology learning process. Therefore the ADVANCE teams whose models have an 

endogenous description of the capital cost evolution of power technologies decided to follow up the 

exercise exploring the impacts of the different cost patterns on PV penetration in the electricity mix and on 

other relevant variables. The main objective of this work is to explore different scenarios related to the 

possible future endogenous cost patterns of the solar PV technology and the relevant impacts on the 

electricity mix. To our knowledge, this is the first multi-model exercise exploring endogenous cost 

pathways, whereas the several cost sensitivity analyses present in the literature, as well as the IPCC 

reports, have always had an exogenous approach. Such an exercise also allows assessing the 

responsiveness of models to changes in the cost data input. A review on the PV capital cost trends over the 

last decades, and in particular on the learning rates which describe this trend, is also proposed.  

 

Learning curves and learning rates 

Integrated Assessment Models do not investigate the actual socio-technical dynamics that leads to cost 

reductions. Rather, they try to identify simplified empirical correlations which are adopted to project future 

patterns.The investment cost evolution for renewable power technologies in IAMs is often modeled 

through an endogenous learning process, mainly described according to two schemes, which can be 

applied singularly or jointly: learning-by-doing (LBD) and learning-by-researching (LBR). LBD relates the cost 

decrease to the experience gained with deployment, while LBR describes the cost decrease as a 
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consequence of dedicated R&D investment. The vast majority of IAMs implement a one-factor learning 

curve according to the LBD framework, see equation (1): 

 

𝐶𝐶𝑡 = 𝐶𝐶1 (
𝐾𝑡

𝐾1
)
−𝑏

 (1) 

 

where the ratio between the capital cost at time t (CCt) and the initial one (CC1) depends on the ratio 

between the cumulative capacity at time t (Kt) and the initial one (K1) to the negative power of a parameter 

(b), which measures the strength of the learning effect. It relates to the learning rate, LR, which measures 

the rate at which unit costs decrease for each doubling of the cumulative capacity, through the following 

relationship: LR = 1-2-b. Thus, a 20% learning rate means that technology costs fall by 20% when the 

cumulative installed capacity doubles compared to the initial level. 

Models normally include a floor cost (FC) to set a minimum price below which investment costs cannot fall. 

The floor cost can either be applied as a hard bound or a soft bound. In the first case, no changes are 

applied to the LBD formula and the cost is fixed to the floor cost once the threshold has been reached, see 

equation (2): 

 

  𝐶𝐶𝑡 = 𝑚𝑎𝑥 {𝐹𝐶, 𝐶𝐶1 (
𝐾𝑡

𝐾1
)
−𝑏

} (2)  

  

In the second case, the floor cost identifies the “incompressible” portion of the initial cost which cannot 

undergo learning (asymptotic formulation), see equation (3): 

 

𝐶𝐶𝑡 = 𝐹𝐶 + (𝐶𝐶1 − 𝐹𝐶) ∙ (
𝐾𝑡

𝐾1
)
−𝑏

 (3) 

 

In this configuration, the same learning rate generates a lower cost decrease with respect to the hard 

bound formula. 

IAMs rely on empirical evidence for the calibration of learning rate parameters. Several reviews have been 

carried out of the existing empirical literature on historical learning rates for power generation 

technologies, both in terms of LBD and in terms of LBR. Focusing on solar PV, Table SM-1 in the 

Supplementary Material summarizes the estimates reported in the reviews carried out in the last decade 

(Rubin et al., 2015, Baker et al. 2013, de La Tour et al. 2013, Junginger et al. 2008, Kahouli-Brahmi 2008, 

Neij 2008) along with some new econometric analyses (Witajewski-Baltvilks et al. 2015, Lee 2012).  

LBD estimates a cluster around 20% of cost reduction for each doubling in the cumulative installed 

capacity, with a range from 9 to 47%. The broad range in estimates is due to the temporal and geographical 

characteristics of the data set used in the estimation, the empirical specification, and the extent to which 

endogeneity issues are addressed (Soderholm and Sundqvist 2007, Nordhaus 2009, Witajewski-Baltvilks et 

al. 2015). Witajewski-Baltvilks et al. (2015) show how LBD rates can vary when statistical uncertainty is 

considered and when some of the variables that are generally omitted from experience curves, such as 

policies and energy prices, are included. 
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As discussed in Sagar and van der Zwaan (2006), it is not clear how learning rates should be extrapolated 

when moving into the future. Soderholm and Sundqvist (2007) find that learning rate estimates over more 

recent periods are larger than those calculated on the full sample because of the market power that 

characterizes the initial diffusion of the technology, whereas the increased competition that emerged 

during the diffusion stage led to a faster decline in technology costs. However, bias could also go in the 

other direction because of diminishing returns and the difficulty of further reducing costs beyond certain 

levels. Additionally, what has not been fully explored is how different learning rates interact with floor cost 

used by some models to determine technology penetration. This is one point addressed in this work, 

especially considering that no estimate refers to the soft bound formulation. 

Only a few estimates are available in the literature for future periods. IEA (2014) and Neij (2008) provide an 

estimate for LBD rates up to 2035 and 2050 respectively, whereas Verdolini et al. (2018) present a review 

on recent expert elicitation exercises about future cost reduction stemming from different levels of R&D 

expenditures, see Table SM-3. While LBR estimates tend to be lower than the few estimates reported in the 

empirical literature, LBD rates are not very different from the ones estimated from historical data. 

 

Involved models and scenario design 

Four IAMs agreed to take part in this exercise: IMAGE, POLES, REMIND, and WITCH, see Table 1 and 

Methods. Monetary values reported in Table 1 and in the rest of the paper are expressed in USD2015. All 

participating models implement the learning-by-doing modeling scheme, and in particular the soft-bound 

modeling scheme for the floor cost, with clear benefits in the exercise coherence. 

 

 
IMAGE POLES REMIND WITCH 

Model type 
Partial 

equilibrium 
model 

Partial 
equilibrium 

model 

General equilibrium 
model 

General equilibrium 
model 

Solution method 
Recursive 
dynamic 

simulation 

Recursive 
dynamic 

simulation 

Intertemporal 
optimization with 
perfect foresight 

Intertemporal 
optimization with 
perfect foresight 

Temporal horizon 2100 2100 2100 2100 

PV cost 
calculation 

Endogenous Endogenous Endogenous Endogenous 

Type of 
endogenous 

modeling 

One-factor 
learning curve 

(LbD) 

One-factor 
learning curve 

(LbD) 

One-factor 
learning curve 

(LbD) 

One-factor 
learning curve 

(LbD) 

Regional 
differentiation 

Yes, with (limited) 
spillover effects 

on learning 

No, only one 
global cost 

No, only one 
global cost 

No, only one 
global cost 

Type of floor cost 
“Soft bound” 

(asymptotic floor 
cost) 

“Soft bound” 
(asymptotic floor 

cost) 

“Soft bound” 
(asymptotic floor 

cost) 

“Soft bound” 
(asymptotic floor 

cost) 
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Plant 
depreciation 

Linear Linear Concave Exponential 

Depreciation rate 0.1 0.04 - 0.044 

Lifetime [years] 25 25 30 25 

Investment cost 
in 2015 [$/kW] 

1576 1924 1916 1879 

Learning rate 20% 15% 20% 20% 

Floor cost [$/kW] 433 619 458 495 

References 
de Boer and Van 

Vuuren, 2017 
Després et al., 

2017 
Ueckerdt et al., 2017  

Emmerling et al., 
2016 and Carrara 
and Marangoni, 

2017 
 

Table 1 – Main features of the models participating in the exercise. 

 

The exercise consists in a sensitivity analysis on the two main learning parameters: the learning rate and 

the floor cost. In particular, a matrix of fourteen main cost scenarios is considered: seven learning rate 

cases (reference and ±25%, ±50%, and ±75% with respect to reference) combined with two floor cost cases 

(with and without floor cost). 

The choice of the learning rate cases derives from an empirical estimate on the PV learning rate carried out 

in the context of the ADVANCE project (Witajewski-Baltvilks et al., 2015) which identifies i) 19% as the 

mean of the relevant normal distribution, and ii) the relative variations of ±25%, ±50%, and ±75% as the ±σ, 

±2σ, and ±3σ values, respectively. The reference learning rate is meant to be the default one of the single 

model. No harmonization efforts have been made across models, considering their calibration needs which 

might lead to different choices within a reasonable range. Indeed, all models implement a learning rate of 

20%, with the exception of POLES (15%). 

The no floor cost case, especially if coupled with high learning rates, might well lead to an extreme 

condition where the PV investment cost approaches zero. This is obviously a hardly policy-relevant 

scenario, but it is useful to conduct diagnostic runs to check the behavior of models in such a configuration 

and compare their outcome (Kriegler et al., 2015). 

These scenarios are explored in a standard mitigation policy, where a carbon tax is applied in order to 

achieve a long-term target of limiting the temperature increase in 2100 with respect to the pre-industrial 

levels below 2°C with a likely chance, in line with the Paris targets. In detail, the tax starts in 2020 and is 

calibrated so as to reach a global cumulative amount of CO2 emissions equal to 1000 Gt in the period 2011-

2100 in the reference scenario. The same tax is then applied to all the other mitigation scenarios. No 

further sensitivity analysis is conducted on the policy dimension, since this aspect is not within the scope of 

this work (in any case it has been thoroughly addressed in many other research works). A baseline case (no 
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policy) is added for benchmarking purposes, considering the two scenarios with and without floor cost. The 

total is thus sixteen scenarios, detailed in Table SM-4. 

 

Results 

The set of explored learning rates produces a wide range of capital cost patterns throughout the century, 

see Figure 1 (IMAGE reports the global average cost weighted on PV capacity in the different regions). This 

range practically covers all the possible cost futures. All models show a robust behavior with this respect. In 

the baseline case, costs span a range of 1057-1316 $/kW in 2050 and 571-1027 $/kW in 2100. In the 

reference mitigation case, the range is 665-1156 $/kW in 2050 and 495-981 $/kW in 2100. In the most 

pessimistic scenario (MIT-LR-75m-FC-ref) the range is 1467-1726 $/kW in 2050 and 1348-1512 $/kW in 

2100, while in the most optimistic scenario (MIT-LR-75p-FC-0) the range is 53-273 $/kW in 2050 and 

21-73 $/kW in 2100. The pessimistic scenario considers the hypothesis of essentially no cost decrease over 

the century (the average cost decrease is only 20% across models), while the lower bound reached in the 

optimistic scenario essentially corresponds to a null cost. Both configurations are unrealistic, but as already 

noted it can be interesting to stress models in these extreme conditions. 

 

 

Figure 1 – Global solar PV investment cost over time. Scenario names are defined as follows: policy (BASE = 

baseline or MIT = mitigation), learning rate (ref = reference learning rate, 25m = ref-25%, 50m = ref-50%, 

75m = ref-75%, 25p = ref+25%, 50p = ref+50%, 75p = ref+75%), floor cost (ref = reference floor cost, 0 = no 

floor cost). 
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As predictable, the different cost pathways lead to very different PV penetration levels in the 

corresponding scenarios. The interesting insight, however, is that comparable cost patterns lead to marked 

differences across models. Figure 2 provides a more detailed overview of the average PV penetration over 

the period 2050-2100 in the sixteen scenarios, dividing between the two cases with and without floor cost. 

Average results in the 2050-2100 period are shown in order to discuss long-term trends without focusing 

on any specific year. In general, scenarios without the floor cost show higher penetration than scenarios 

where the reference floor cost is applied, as in the latter case the learning effect operates on a limited 

portion of the initial cost and thus the cost decrease is faster. It is interesting to note that REMIND, which 

shows the highest PV penetration levels, also shows the highest sensitivity to learning rates. In particular, 

the average PV penetration in 2050-2100 in the reference mitigation scenarios is 53% with floor cost and 

67% without floor cost, respectively. The range comprised between the LR-75m and LR-75p scenarios is 13-

62% with floor cost and 14-72% without floor cost (baseline scenarios are excluded from this account as 

they are reported only as benchmarks). On the opposite side, not only is POLES the model generating the 

lowest PV penetration levels, but it is also characterized by the lowest elasticity, especially in the scenarios 

with floor cost. More in detail, PV penetration in the reference mitigation scenarios is 17% with floor cost 

(with a range of 14-18%) and 20% without floor cost (with a range of 14-29%), respectively. IMAGE and 

WITCH show intermediate and very similar results. In IMAGE, the average PV share is 16% in the reference 

mitigation scenario with floor cost (range: 10-19%) and 27% without floor cost (range: 12-39%), while for 

WITCH the corresponding results are 19% (range: 12-24%) and 26% (range: 13-35%), respectively. 

 

 

Figure 2 – Global solar PV share in the electricity mix (average 2050-2100). 
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Three main insights can be drawn from these results. First, despite the huge differences in the explored 

cost patterns, most models show a relatively modest sensitivity in terms of PV penetration. The most 

evident case is given by POLES in the scenarios with floor cost: PV penetration is practically insensitive to 

capital cost changes and remains restricted to a four-percentage point range. In this perspective, only 

REMIND is a clear outlier, showing a huge sensitivity to capital costs. Second, even in the extreme cases 

where PV can be installed practically for free, penetration does not reach particularly high levels, and in all 

models except REMIND it remains well below 50%. Third, in all models and in both floor cost 

configurations, PV penetrations show an asymmetric behavior,  tending to collapse towards a sort of upper 

bound: this means that models show higher sensitivity to lower learning rates than to higher learning rates. 

This fact is highlighted in Figures SM-1 and SM-2 in the Supplementary Material, which explicitly show the 

relative variation of PV penetration in the different learning rate scenarios centered on the reference case, 

with and without floor cost, respectively. 

Figure 3 provides a full overview of the PV penetration as a function of the relative cost reduction with 

respect to 2015, in order to quantify the sensitivity of PV penetration to capital cost reductions. 

 

 

Figure 3 – Global PV penetration: sensitivity to cost reduction (each point corresponds to one specific year, 

independently of the scenario to which it belongs). The interpolating line starts from 0.01 on the y-axis as 

this is the global PV penetration in 2015. 

  

IMAGE POLES 

REMIND WITCH 
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REMIND shows the highest sensitivity, being equal to 0.59 (every percentage point of cost decrease implies 

an increase of 0.59% in PV penetration). The other three models show a similar sensitivity: IMAGE 0.34, 

POLES 0.24, WITCH 0.29. The overall average is 0.40. Results are indeed quite different between the two 

halves of the century, as shown in Figures SM-5 and SM-6. In the period 2015-2050, the average sensitivity 

is 0.31 (IMAGE 0.20, POLES 0.19, REMIND 0.46, WITCH 0.24), while in the period 2050-2100 the average 

sensitivity is 0.46 (IMAGE 0.39, POLES 0.28, REMIND 0.72, WITCH 0.33). 

Models clearly show that with cost collapsing to zero (i.e. to a relative cost reduction equal to 1), PV 

penetration is well far from 100%. Rather, a general accumulation towards a sort of boundary is found 

(with the partial exception of IMAGE). This highlights the importance of non-capital cost factors, especially 

system integration, and the competition with other low-carbon technologies in achieving mitigation 

targets. In this perspective, however, it is important to note that the exercise is not focused on discussing 

the feasibility or the implications of a fully-solar or fully-renewable electricity mix (see for instance the 

debate in Jacobson et al., 2015 and Clack et al., 2017). It considers solar PV given its historical and projected 

cost evolution, but the framework could be applied to any similar technology. 

How are the different PV penetration levels reflected on the overall penetration of Variable Renewable 

Energies? Figure 4 reports the average VRE penetration in 2050-2100 in the explored scenarios, replicating 

the graph regarding PV penetration of Figure 2. It is noted that in this work, VREs comprise wind and both 

solar technologies, i.e. PV and CSP (Concentrated Solar Power), coherently with Pietzcker et al., 2017. 

 

 

Figure 4 – Global VRE share in the electricity mix (average 2050-2100). 
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With the partial exception of IMAGE, VRE penetration appears practically insensitive to the different PV 

capital cost paths. This is observed both in terms of reduced distance between scenarios within each of the 

two floor cost configurations and across the two floor cost configurations. Essentially, the higher/lower PV 

penetration associated to the different capital cost patterns occurs to the detriment/benefit of wind and 

CSP. In other words, wind and CSP almost completely compensate the variations related to PV. This result is 

particularly remarkable in REMIND, which is characterized by a very strong sensitivity as far as the mere PV 

share was concerned. If the floor cost is applied, this model shows a VRE penetration of 75% (range: 

70-77%), while penetration is equal to 77% (range: 70-79%) if no floor cost is considered. A similar 

sensitivity range characterizes WITCH: VRE penetration in the reference case is 56% (range: 53-58%) with 

floor cost, while it is 59% (range: 53-63%). POLES shows practically no sensitivity: VRE penetration is 

clustered in the range 46-47% with floor cost and in the range 46-48% without floor cost. As said, IMAGE is 

the only model showing a significant residual sensitivity: in the scenarios with floor cost, indeed VRE 

penetration does not vary markedly, being 30% in the reference case and showing a range of 26-33%. 

Scenarios without floor cost have a higher dispersion, instead: the result in the reference case is 39%, while 

the range is 27-49%. 

This limited variability is clearly reflected in the relative variation of VRE penetration in the different 

learning rate scenarios centered on the reference case which is shown in Figures SM-12 and SM-13.  

 

 

Figure 5 – Global VRE penetration. 

 

It is interesting to note that here a clear collapse towards a sort of upper boundary is observed in REMIND 

only, see Figure 5. In fact in this model the VRE penetration monotonously grows over time and the broad 

variability found in the first half of the century progressively disappears as VRE penetration converges to 

about 83%. This result is in line with Luderer et al. (2017), which describes the main set of scenarios carried 

out in the ADVANCE exercise mentioned at the beginning of this paper. That multi-model exercise explored, 

among others, a scenario where the Levelized Cost Of Electricity (LCOE) of VREs was aligned with the 

lowest among traditional technologies (typically coal), showing that VRE penetration even in this generous 

case would not exceed 70-80% on average across models on average in the period 2050-2100. This result 
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highlighted that the integration challenges, i.e. the issues related to the non-negligible penetration of 

variable power sources in the electricity grid, are of paramount importance and, in general, have an impact 

which is comparable to direct technology costs. POLES too shows a monotonous behavior and a sort of 

convergence towards an asymptotic value, even if this value is around 50%, well below the “integration 

threshold” found in Luderer et al., 2017. As a consequence, the limited variability has to be explained with 

“internal” modeling reasons. This also applies to WITCH, which does not show any clear boundary level: the 

evolution of VRE penetration freely follows its path, with a mutual “exchange” of the PV, CSP, and wind 

contributions depending on the PV cost pattern. The limited sensitivity shown by WITCH can be explained 

with the Constant Elasticity of Substitution (CES) framework that characterizes this model. In a CES 

structure, inputs are combined in a production function with a level of substitutability defined by the 

relevant elasticity (in this case, inputs are the energy generation contributions from the different 

technologies). Lower-than-infinite elasticities imply that the inputs are not linearly combined, i.e. they 

cannot be considered completely substitutable. This framework is adopted in order to implicitly model 

what in reality is experienced as preference for heterogeneity: with a fully-linear, unconstrained 

framework, the energy system would be dominated by the cheapest technology, whereas in reality the 

market is characterized by a plurality of choices, driven by a wealth of social, political, and technological 

aspects which cannot fully be translated into simple economic constraints. Carrara and Marangoni (2017) 

discuss the benefits of choosing an intermediate elasticity in the node combining the VRE and non-VRE 

inputs in WITCH. Still, the CES structure is such that variations in one input (in our case, different levels of 

PV generation derived from variable capital costs) have a primary impact on the closest CES nodes (hence, 

wind and CSP) and only secondarily on the other technologies. Finally, in IMAGE the sensitivity increases 

over time instead of diminishing. In this case, neither a real barrier due to the integration challenges nor 

specific internal constraints seem to be present, allowing higher flexibility in response to the different PV 

cost inputs. 

It is finally interesting to analyze how the different PV and VRE penetration levels impact on the overall 

electricity mix (Figure 6). 

In the baseline scenario with floor cost, models project quite a similar global electricity demand averaged 

over the period 2050-2100, comprised between 290 EJ/yr (IMAGE) and 343 EJ/yr (WITCH). To put these 

numbers in perspective, this means about a threefold to fourfold increase from the 87 EJ/yr registered in 

2015 (IEA, 2107). The no policy scenario results in a dominance of fossil-based plants in IMAGE: coal and 

gas production sum up to 74% of the whole generation, while VREs are limited to 11%. On the other hand, 

POLES and REMIND envisage a strong decarbonization even in the absence of mitigation policies: VREs 

account for 45% and 42% of the electricity mix, respectively, even if with a prevalence of wind in POLES 

(27%-18%), while solar – almost completely PV – prevails in REMIND (33%-9%). WITCH shows an 

intermediate result: 25% of VRE penetration, with prevalence of wind (17%-8%). 

Several research works have highlighted that the mitigation of greenhouse gas emissions can have opposite 

effects on the electricity demand: if energy efficiency measures prevail, demand is likely to decrease with 

respect to the baseline projections, whereas if a strong electrification of the energy sector coupled with a 

decarbonization of the electricity sector prevails (especially based on renewables), demand is likely to 

increase. The models involved in this exercise show quite a diverse behavior: focusing on the reference 

mitigation case with floor cost (MIT-LR-ref-FC-ref), IMAGE shows the first trend (the average 2050-2100 

global electricity demand decreases to 224 EJ/yr), REMIND shows the second trend (demand rises up to 

423 EJ/yr), while the two effects tend to compensate in POLES (310 EJ/yr) and WITCH 

(357 EJ/yr). Unsurprisingly, the electricity mix is dominated by VREs in REMIND (75%), while “centralized” 

technologies, i.e. Carbon Capture and Storage (CCS), nuclear, and hydro have the lion’s share in IMAGE 
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(67%), with VREs accounting for 30% only. Intermediate results are found in POLES and WITCH, where VREs 

account for 47% and 56% of the electricity mix, respectively (interestingly, in POLES it is about the same 

level found in the baseline scenario). 

 

 

Figure 6 – Electricity mix in selected scenarios (BASE-LR-ref-FC-ref, MIT-LR-ref-FC-ref, MIT-LR-75m-FC-ref, 

MIT-LR-75p-FC-0). 

 

Conclusions and discussion 

This paper describes a multi-model exercise aimed at exploring different endogenous learning routes 

applied to solar PV and their impacts on PV penetration in the electricity mix. The exercise involves four 

Integrated Assessment Models which describe the cost evolution of solar PV according to a learning-by-

doing framework with floor cost. Scenarios are explored on a standard mitigation policy compatible with 

the Paris targets and cover a wide variety of cost patterns compatible with any reasonable cost futures. 

Global PV penetration in the long run (in particular, averaging over the 2050-2100 period) spans a range of 

10-72%, with a marked growth with respect to the current 1% in all scenarios and models. Despite the 

marked variation of costs and the variability observed across models, all models tend to show a limited 

sensitivity to PV penetration in their specific results. Sensitivity of PV penetration to capital cost reduction 

is averagely 0.4 across scenarios, being lower in the first half of the century (0.31) than in the second half 

(0.46). Sensitivity is not symmetric with respect to increasing or decreasing learning rates, being markedly 

higher for the latter. Indeed, all models tend to show a sort of “threshold” on which PV penetration tends 

to collapse even in the most favorable scenarios. This highlights the role of non-capital cost factors, 
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especially system integration, and the competition with alternative low carbon sources, including Carbon 

Capture and Storage. In this regard, it is reminded that it is not within the scope of this work to discuss the 

feasibility or the implications of reaching a fully-solar or fully-renewable electricity portfolio. Sensitivity to 

PV capital cost even diminishes when all variable renewable energies (i.e. wind and solar CSP in addition to 

PV) are focused. This means that, according to the models participating in this exercise, competition of 

solar PV takes place primarily with wind and CSP, and the higher/lower penetration related to lower/higher 

capital costs mainly occurs to the detriment/benefit of these technologies. This is partly explained with 

modeling reasons (e.g. the role of the Constant Elasticity of Substitution framework in the WITCH model), 

but also suggests the need for further research concerning the competition within variable renewable 

energies, and between them and the other power technologies, which indeed is not within the scope of 

this work. 
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Learning-by-doing in solar PV: evidence from the existing literature 

 

Soderholm and Sundqvist (2007) show that explicitly accounting for economies of scales reduces learning-

by-doing (LBD) rates, suggesting that if this driver is not modelled, LBD rates are upward biased. Soderholm 

and Sundqvist (2007) show that including a time trend so as to capture any underlying change in trend 

other than R&D knowledge stock or installed capacity absorbs all variation otherwise captured by the R&D 

stock, whereas LBD rates are quite stable, especially when endogeneity issues are taken into account. 

Most IAMs use an approach based on endogenous technological change modelled through a one-factor 

learning curve (LBD) as described in equations (1) and (2). This is the case for E3MG, IMACLIM, IMAGE-

TIMER, REMIND and WITCH. A few models (MERGE-ETL, POLES – but not in the version adopted in this 

work) use a two-factor learning curve for endogenous technological change, considering both the effects of 

learning-by-doing and learning-by-researching, whereas some other models (e.g. MESSAGE and GCAM) use 

an exogenous technical change by defining different investment costs for future periods (which vary 

according to reference/policy scenarios). Table SM-2 summarizes the learning rates and the floor costs 

used by the IAMs with endogenous technological change. Since models rely on empirical literature, it is not 

surprising that the range of LBD rates in terms of minimum, maximum and mean values is similar to the 

range emerging from the empirical literature in Table SM-1. 

 

 

Source # Factors Rate LR (%) Timeframe Method 

 
 

 
min max mean 

  
Baker et al. (2013) 1 LBD 17 35 20 na Review 

Junginger et al. (2008) 1 LBD 10 47 22 1957-2006 Review 

Kahouli-Brahmi (2008)  1 LBD 18 35 23 1959-1998 Review 

La Tour et al. (2013) 1 LBD 10 30 21 1965-2005 Review 

Lee, conference proceeding 

(2012) 
2 LBR 9 15 11 2001-2010 Regression analysis 

Lee, conference proceeding 

(2012) 
2 LBD 10 10 10 2001-2010 Regression analysis 

Neij (2008) 1 LBD 10 47 20 1976-2001 Review 

Rubin et al. (2015) 1 LBD 10 47 23 1959-2011 Review 

Rubin et al. (2015) 2 LBR 10 14 12 1971-2001 Review 

Rubin et al. (2015) 2 LBD 14 32 18 1971-2000 Review 

Witajewski-Baltvilks et al. 

2015, Mod 1 
1 LBD 9 33 20 1990-2012 Regression analysis 

Witajewski-Baltvilks et al. 

2015, Mod 2 
1 LBD 10 46 27 1990-2012 Regression analysis 
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Witajewski-Baltvilks et al. 

2015, Mod 3 
1 LBD 10 29 19 1990-2012 Regression analysis 

Witajewski-Baltvilks et al. 

2015, OLS 
1 LBD 10 14 12 1990-2012 Regression analysis 

Table SM-1: Learning rate estimates based on the empirical evidence. 

 

 

Source # Factors Type LR (%) Timeframe Floor cost  

 
 

 
min max mean 

 

(2015$/k

W) 

E3MG (Edenhofer et al. 2010) 1 LBD na na 30 Constant 1546 

IMACLIM (Bibas et al. 2012) 

  central station PV 

 

1 

 

LBD 

 

15 

 

25 

 

na 

 

Constant 

 

1215 

  rooftop PV 1 LBD 15 25 na Constant 2121 

IMAGE-TIMER (Baker et al. 

2013) 
1 LBD na na 35 2000 0 

 
1 LBD na na 9 2100 0 

MERGE-ETL (Magné et al. 2010) 2 LBD na na 10 Constant 0 

 
2 LBR na na 10 Constant 0 

POLES (Criqui et al. 2015) 2 LBD na na 20 2010 1361 

 
2 LBR na na 45 2010 1361 

REMIND (Luderer et al. 2015) 1 LBD na na 20 Constant 619 

WITCH (Emmerling et al., 2016) 1 LBD na na 16.5 Constant 619 

Table SM-2: Learning rates and floor costs in IAMs. Miminum, maximum, and mean values for LR result 

from the survey of existing models with endogenous technological change. “Constant” means that the LR is 

constant over time, whereas in the other cases LR is varying over time and values for 2000/2010/2100 are 

provided. 
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Source # 

Factors 

Rate R&D  LR (%) Timefram

e 

Method 

   Level min ma

x 

mea

n 

  

Bosetti  et al. (2016) 

CMU 

1 LBR High -1 13 6 Future: 

2030 

Expert 

elicitation 

Bosetti  et al. (2016) 

FEEM 

1 LBR High 4 12 7 Future: 

2030 

Expert 

elicitation 

Bosetti  et al. (2016) 

Harvard 

1 LBR High -3 11 3 Future: 

2030 

Expert 

elicitation 

Bosetti  et al. (2016) 

CMU 

1 LBR Low -2 13 5 Future: 

2030 

Expert 

elicitation 

Bosetti  et al. (2016) 

FEEM 

1 LBR Low 1 10 6 Future: 

2030 

Expert 

elicitation 

Bosetti  et al. (2016) 

Harvard 

1 LBR Low -2 8 2 Future: 

2030 

Expert 

elicitation 

Bosetti  et al. (2016) 

UMass 

1 LBR Low -1 7 4 Future: 

2030 

Expert 

elicitation 

Bosetti  et al. (2016) 

FEEM 

1 LBR Mid 2 11 6 Future: 

2030 

Expert 

elicitation 

Bosetti  et al. (2016) 

Harvard 

1 LBR Mid -1 10 3 Future: 

2030 

Expert 

elicitation 

Bosetti  et al. (2016) 

UMass 

1 LBR Mid -1 7 5 Future: 

2030 

Expert 

elicitation 

Neij (2008) 1 LBD - 15 25 20 Future: 

2050 

Expert 

elicitation / 

Extrapolation 

from 

historical 

values 

OECD/IEA (2014) 1 LBD - 20 20 20 Future: 

2035 

Extrapolation 

from 

historical 

values 

Table SM-3: Learning rate estimates based on expert elicitation. 

 

  



24 

 

Scenario matrix 

 

 Scenario Name Policy Learning Rate Floor Cost 

1 BASE-LR-ref-FC-ref Baseline Ref Ref 

2 BASE-LR-ref-FC-0 Baseline Ref 0 

3 MIT-LR-75p-FC-ref Mitigation +75% Ref 

4 MIT-LR-50p-FC-ref Mitigation +50% Ref 

5 MIT-LR-25p-FC-ref Mitigation +25% Ref 

6 MIT-LR-ref-FC-ref Mitigation Ref Ref 

7 MIT-LR-25m-FC-ref Mitigation -25% Ref 

8 MIT-LR-50m-FC-ref Mitigation -50% Ref 

9 MIT-LR-75m-FC-ref Mitigation -75% Ref 

10 MIT-LR-75p-FC-0 Mitigation +75% 0 

11 MIT-LR-50p-FC-0 Mitigation +50% 0 

12 MIT-LR-25p-FC-0 Mitigation +25% 0 

13 MIT-LR-ref-FC-0 Mitigation Ref 0 

14 MIT-LR-25m-FC-0 Mitigation -25% 0 

15 MIT-LR-50m-FC-0 Mitigation -50% 0 

16 MIT-LR-75m-FC-0 Mitigation -75% 0 

Table SM-4 – Scenario set. 
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Sensitivity of PV penetration 
 

 

 

Figure SM-1 – PV share relative variation with respect to the reference case (scenarios with floor cost). 

 

 
Figure SM-2 – PV share relative variation with respect to the reference case (scenarios without floor cost). 
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Sensitivity of PV penetration to capital cost reduction  

 

 

Figure SM-3 – Global PV penetration: sensitivity to cost reduction (all models). 

 

 
Figure SM-4 – Global PV penetration: sensitivity to cost reduction (each point corresponds to one specific 

year, independently of the scenario to which it belongs). Cost reductions are expressed as the ratio between 

the capital cost in 2015 and the capital cost in the relevant year. 
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Figure SM-5 – Global PV penetration: sensitivity to cost reduction (2015-2050). 

 

 

Figure SM-6 – Global PV penetration: sensitivity to cost reduction (2050-2100). 
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Figure SM-7 – Global PV penetration: sensitivity to cost reduction (2015-2050, all models). 

 

 

Figure SM-8 – Global PV penetration: sensitivity to cost reduction (2050-2100, all models). 
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“Statistical” PV penetration 

As discussed in the main text, Witajewski-Baltvilks et al. (2015) provide an empirical estimate of the PV 

learning rate, not only in terms of mean value (19%) but in terms of statistical normal distribution, where 

the relative variations of ±25%, ±50%, and ±75% correspond to the ±σ, ±2σ, and ±3σ values, respectively. 

These values allow deriving the statistically average PV penetration shares, weighting the shares associated 

to the different learning rates on the relevant values of the normal distribution, schematized in 

Figure SM-9. The weights of the normal distribution corresponding to the median and the ±σ, ±2σ, and ±3σ 

levels are 0.3989, 0.2420, 0.0540, and 0.0044, respectively. 

 

 

Figure SM-9 – Normal probability density function. 

Figures SM-10 and SM-11 show the comparison between the average PV penetration in 2050-2100 in the 

reference mitigation scenario and the penetration rate obtained with the statistical average, for both 

configurations with and without floor cost, respectively. As noted in Figure 2 in the main text, models show 

higher sensitivity to low learning rates, therefore the statistical average penetration rate is lower than the 

reference one, apart from POLES in the scenarios without floor cost. Indeed, differences are not particularly 

broad, with the partial exception of REMIND (see Table SM-4). 

 

 
Figure SM-10 – Global PV penetration, average 2050-2100, with floor cost. 
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Figure SM-11 – Global PV penetration, average 2050-2100, without floor cost. 

 
 

 

With floor cost Without floor cost 

 

Reference Weighted Reference Weighted 

IMAGE 15.12% 14.99% 26.40% 26.15% 

POLES 16.75% 16.14% 19.82% 20.12% 

REMIND 51.50% 50.33% 66.36% 63.59% 

WITCH 19.25% 19.06% 26.21% 25.91% 

Table SM-4 – Global PV penetration, average 2050-2100. 
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Sensitivity of VRE penetration 

 

 
Figure SM-12 – VRE share relative variation with respect to the reference case (scenarios with floor cost). 

 

 

Figure SM-13 – VRE share relative variation with respect to the reference case (scenarios without floor cost). 
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VRE penetration: scatter plots 

 
Figure SM-14 – Global VRE penetration, with floor cost. 

 

 
Figure SM-15 – Global VRE penetration, without floor cost. 
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Figure SM-16 – Global VRE penetration, all scenarios. 

 
Electricity mix 

 

Figure SM-17 – Global electricity mix in selected years (Baseline scenario). 
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Figure SM-18 – Global electricity mix in selected years (Reference scenario). 

 

 

Figure SM-19 – Global electricity mix in selected years (Optimistic scenario). 
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Figure SM-20 – Global electricity mix in selected years (Pessimistic scenario). 
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Abstract 

 

Meeting the targets of climate change mitigation set by the Paris Agreement entails a huge transformation 

of the energy sector, as low- or no-carbon technologies are predicted to gradually substitute traditional, 

fossil-based technologies. In this perspective, the vast majority of energy scenarios project a fundamental 

role of Carbon Capture & Storage (CCS). However, uncertainty remains on the actual techno-economic 

feasibility of this technology: despite the considerable investment over the recent past, commercial 

maturity is yet to come. 

The main aim of this work is to evaluate the impacts of a progressively delayed deployment of CCS plants 

from a climate, energy, and economic perspective, focusing in particular on the power sector. This is done 

with the Integrated Assessment Model WITCH, exploring a wide set of long-term scenarios over mitigation 

targets ranging from 1.5°C to 4°C in terms of temperature increase with respect to the pre-industrial levels. 

The analysis shows that CCS will be a key mitigation option at a global level for carbon mitigation, achieving 

about 30% of the electricity mix in 2100 (with a homogeneous distribution across coal, gas, and biomass) if 

its deployment is unconstrained. If CCS deployment is delayed or forbidden, penetration cannot reach the 

optimal unconstrained level, resulting in a mix rearrangement, with a strong increase in renewables and, to 

a lesser extent, nuclear. The mitigation targets can be met, but policy costs are 35% to 72% higher without 

the implementation of CCS than in the corresponding unconstrained scenarios. In Europe, CCS is not 

projected to be a considerable mitigation option, therefore the sensitivity analysis over the mitigation 

targets and the CCS deployment years does not highlight meaningful technical and economic changes.  
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1. Introduction 

Climate change mitigation is acknowledged as one of the major challenges that the mankind will have to 

face in the 21st century (IPCC, 2014). With the Paris Agreement, reached in 2015 during the Conference of 

Parties 21 (COP21), almost all countries of the world have committed to pursuing the ambitious target of 

limiting to 2°C the global temperature increase in 2100 with respect to the pre-industrial levels, making all 

the possible efforts to stay as close to 1.5°C as possible, in order to further limit detrimental climate 

impacts (Schellnhuber et al., 2016). However, these targets are very difficult to be reached, as they entail 

huge technological and economical fundamental transformations, as well as an internationally coordinated 

action. 

Carbon Capture & Storage (CCS) has widely been recognized as one of the main technological solutions to 

decarbonize the energy sector and virtually all research studies project a considerable role in future 

mitigation pathways (Krey et al., 2014 and Koelbl et al., 2014), especially if the target is to stay below 2°C 

(Rogelj et al., 2015). This technology consists in capturing the carbon dioxide generated in plants fed with 

fossil fuels or biomass and storing it in proper underground deposits or marine aquifers (IEA, 2013). Its 

main advantage is the possibility to achieve a (theoretically) zero carbon energy generation adopting fossil 

fuels plants, i.e. without massively reconsidering the current generation paradigm that still dominates the 

energy sector (IEA, 2017). Indeed, even negative emissions can be achieved if CCS plants are fed with 

biomass which is replaced at a pace equal to consumption: in this case, the carbon neutrality related to the 

use of biomass (net of the emissions associated to the whole life cycle concerning harvesting, transport 

etc.) is complemented by the CO2 removal in the CCS plant. An additional advantage is related to the 

dispatchability of these plants, which is a fundamental aspect in a future energy scenario where non-

dispatchable renewables (primarily wind and solar) will likely reach significant shares in the electricity mix. 

CCS availability would also entail economic savings in pursuing mitigation targets (Davidson et al., 2017). 

However, large-scale CCS deployment is yet to come. Safety concerning the stability of storage sites, public 

acceptance, high technology costs, incomplete or unclear regulatory framework, the absence of business 

models, and a general uncertainty on the socio-economic impacts are major obstacles that still hinder the 

take-off of this technology (Creutzig et al., 2013 and Muratori et al., 2016). As a result, so far, very few and 

small scale plants have been installed worldwide (GCCSI, 2017). 

In this context, the main objective of this work is to investigate the role that CCS could play in carbon 

mitigation and in particular assess the techno-economic impacts that a progressively delayed deployment 

of this technology can have both in terms of re-arrangement of the energy mix and in terms of policy costs. 

In other words, how urgent is it to start installing CCS plants for the feasibility of more and more stringent 

climate targets? 

This work focuses on the electricity sector, which is described in detail in the model adopted in this work, 

the Integrated Assessment Model (IAM) WITCH. 

The paper is structured as follows. Section 2 describes the WITCH model, and especially how CCS 

technologies are modeled therein. Section 3 reports the scenario design. Section 4 reports and extensively 

discusses the most relevant results of the analysis. Finally, Section 5 concludes. 
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2. Methodology 

2.1 The WITCH model 

The tool adopted in this research is the World Induced Technical Change Hybrid (WITCH) model. WITCH is a 

dynamic optimization Integrated Assessment Model (IAM) designed to investigate the socio-economic 

impacts of climate change over the 21st century (Bosetti et al., 2006 and Emmerling et al., 2016). It 

combines a top-down, simplified representation of the global economy with a bottom-up, detailed 

description of the energy sector, nested in a Constant Elasticity of Substitution (CES) structure 

(Figure 1). The model is defined on a global scale: countries are grouped into thirteen aggregated regions, 

which strategically interact according to a non-cooperative Nash game. The thirteen economic regions are 

USA (United States), WEURO (Western EU and EFTA countries), EEURO (Eastern EU countries), KOSAU 

(South Korea, South Africa and Australia), CAJAZ (Canada, Japan and New Zealand), TE (Transition 

Economies, namely Russia and Former Soviet Union states and non-EU Eastern European countries), MENA 

(Middle East and North Africa), SSA (Sub-Saharan Africa except South Africa), SASIA (South Asian countries 

except India), EASIA (South-East Asian countries), CHINA (People’s Democratic Republic of China and 

Taiwan), LACA (Latin America and Central America) and INDIA (India).1 As the model acronym suggests, 

technological change is endogenously modeled in WITCH, and it regards energy efficiency and the capital 

cost of specific clean technologies. 

 

 

Figure 1 – The CES structure in WITCH. 

 

                                                        
1
 The aggregated results for Europe derive from the combination of WEURO and EEURO. 
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The CES structure reported in Figure 1 shows how the top-down aggregated economic model is linked with 

the disaggregated energy sector. In particular, energy services (ES) and the aggregated capital and labor 

node (KL) are combined to produce the final economic output of the model. Energy services are provided 

by the combination of the capital of energy R&D (RDEN), which is a proxy of energy efficiency, and the 

actual energy generation (EN). This node models the fact that the same energy services can be obtained 

through a lower level of energy input if there is higher energy efficiency. The EN node is divided between 

the electric (EL) and non-electric sector (NEL), with a progressive disaggregation down to the single 

technologies. The electric sector has a higher detail, while the non-electric sector mostly reports nodes 

which collect consumption from all the non-electric usages of one specific energy source, except for the 

road passenger and road freight transport sectors, which are the only demand sectors being explicitly 

modeled2 (see Bosetti and Longden, 2013, and Carrara and Longden, 2017). 

Focusing on the electric sector, the hydroelectric technology is found first (ELHYDRO), which is essentially 

exogenous in the model. The other technologies converge to the EL2 node, which is divided between two 

further nodes: EFLFFREN, i.e. the combination of fossils and renewables, and ELNUKE&BACK, i.e. the 

combination of nuclear and backstop. The fossil node (ELFF) has three group of technologies: 

i) coal&biomass (ELCOALBIO), further divided into pulverized coal without CCS (ELPC), pulverized biomass 

without CCS (ELPB), integrated gasification coal with CCS (ELCIGCC), and integrated gasification biomass 

with CCS (ELBIGCC); ii) oil, only without CCS (ELOIL); iii) gas (ELGAS), with and without CCS (ELGASTR and 

ELGASCCS, respectively). Variable renewable energies (ELW&S) have i) wind (ELWIND), further divided 

between onshore (WINDON) and offshore (WINDOFF); ii) solar PV (ELPV); iii) solar CSP (ELCSP). Nuclear and 

backstop feature traditional fission nuclear (ELNUKE) and a backstop technology (ELBACK). The latter 

models a hypothetical future technology which generates electricity with no fuel costs and no carbon 

emissions, although characterized by high capital costs. It can be interpreted as an advanced nuclear 

technology, for instance nuclear fusion or advanced fast breeder fission reactors. However, this technology 

is not considered in the scenarios explored in this work. Concerning the non-electric sector, the first 

distinction is between traditional biomass (TradBiom), coal (COALnel) and the aggregated node formed by 

oil, gas, and modern biomass (OGB), which precisely features gas (GASnel), traditional biofuels (Trad Bio), 

and the combination (OIL&BACK) between oil (OILnel) and a non-electric backstop technology, i.e. 

advanced biofuels (BACKnel).  

The CES structure tries to capture from a modeling point of view the preference for heterogeneity that is 

experienced in the real world, where the choice of investing in energy technologies does not normally 

depend on economic considerations only. The numbers reported in the CES scheme under the specific 

nodes indicate the relevant elasticity of substitution. As suggested by the name, this value quantifies the 

level of substitutability between the sub-nodes that converge in the specific node. Zero elasticity means 

that the production factors are not substitutable and thus they are summed in fixed shares. Infinite 

elasticity means that the production factors are completely interchangeable and thus the competition 

between the two occurs on an economic basis only. Intermediate elasticities result in an intermediate 

behavior. More details concerning the CES structure can be found in Carrara and Marangoni, 2017. 

 

                                                        
2
 These sectors are not shown in the CES scheme. 
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2.2 CCS modeling 

WITCH models four CCS technologies, three in the electricity sector and one in the non-electric sector. The 

three electric technologies have been listed in the previous section and feature coal, gas, and biomass (the 

latter often indicated with BECCS). For all of them, the CCS technology directly competes with the relevant 

non-CCS technology, to which it is related through an infinite elasticity. The non-electric technology is 

applied to non-electric coal, even if it does not directly appear in the CES structure and it is not considered 

in this work3. 

CCS modeling occurs on two levels, one regarding the power technologies and the other regarding the 

capture and storage costs. 

Concerning the power plants, Table 1 summarizes the main modeling assumptions for the three categories 

of CCS power plants.4 It should be noted that no further technological differentiation is considered in this 

work within each fuel category (e.g. oxy-fuel combustion, post-process capture or other specific 

technological solutions). Concerning the data not reported in the table, O&M costs across regions are 

averagely 45 $/kW for gas and 75 $/kW for coal and biomass, respectively5. Efficiency of coal plants starts 

at 39% in 2015, linearly increases up to 43% in 2050, and then remains constant in the second part of the 

century. This is assumed to replicate the progress of the efficiency of non-CCS plants subtracting a 

7%-efficiency loss related to the capture and storage process. Efficiency in biomass plants follows the same 

rationale, with a 10%-shift downwards. Efficiency in gas plants is regionally differentiated in 2015 (values 

are comprised between 39% and 51%), with a common convergence to 55% in 2050, which is held constant 

afterwards. 

  

 
COAL CCS GAS CCS BECCS 

Investment cost [$/kW] 3925 1856 5162 

Lifetime [years] 40 25 25 

Capacity factor 85% 70% 80% 

Table 1 – Modeling assumptions for the CCS power plants. 

 

CO2 sequestration, transport, and storage are modeled via regional supply cost curves, which depend on 

site availability. The unit cost curve CCCS(t,n) has a convex shape and is shown in Equation 1 (t and n refer to 

time step and region, respectively): 

                                                        
3
 For the sake of coherence, the working hypotheses in terms of CCS deployment which will be described in Section 3 

have been applied to the non-electric sector too. However, this work focuses on the power sector, therefore no 
further details are provided on the non-electric side. 
4
 If not differently specified, values are held constant across regions and over the century. 

5
 Only fixed O&M costs are considered. Costs are expressed in USD2015. 
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𝐶𝐶𝐶𝑆(𝑡, 𝑛) = 𝑎𝐶𝐶𝑆(𝑛) ∙ exp⁡(𝛼𝐶𝐶𝑆(𝑛) ∙ 𝑀𝐶𝐶𝑆(𝑡, 𝑛)
𝛽𝐶𝐶𝑆(𝑛)) (1) 

 

where MCCS(t,n) is the cumulated amount of CO2 captured over the years (the capture rate is fixed to 90% 

for all the three power technologies), while a, α, β are parameters calibrated on the storage capacities in 

the different regions as derived from IPCC, 2005, which estimates a global capacity between 1678 and 

11100 GtCO2. The total CCS cost is finally computed by multiplying the unit cost CCCS by the amount of fuel 

burnt in the relevant power plants. 

Global prices of fossil fuels are endogenously calculated in WITCH, while it is coupled with the Global 

Biosphere Management Model (GLOBIOM, see Havlík et al., 2014) to model land use. GLOBIOM provides 

biomass supply cost curves to WITCH for different economic and mitigation trajectories. This allows 

assessing woody biomass availability and cost. 

 

3. Scenario design 

The analysis considers a set of 25 scenarios where five climate targets are combined with five temporal 

options related to CCS deployment. The five climate targets refer to the temperature increase in 2100 with 

respect to the pre-industrial levels and are equal to 3.5°C, 3°C, 2.5°C, 2°C, and 1.5°C (the two latter are the 

most relevant in the Paris Agreement perspective6). The five temporal options refer to the starting year 

when investing in CCS is allowed. These years are 2020, 2040, 2060, and 2080, which are in addition to the 

case where CCS is not installed at all. As investment take time  to materialize, this framework implies that 

the first deployment year in the first four cases is 2025, 2045, 2065, and 2085, respectively. Somehow, the 

no CCS case which would correspond to fixing the starting year of investment in 2100, i.e. the first 

deployment year in 2105, after the temporal horizon of WITCH. 

A complementary baseline or Business-as-Usual (BAU) scenario has also been run, where no carbon policy 

is applied. De facto this leads to no CCS deployment by construction: in fact, in the absence of a carbon 

signal, there is no reason to invest in a carbon-removal technology which is by definition more expensive 

than the corresponding non-CCS plants. The baseline scenario leads to a temperature increase in 2100 of 

about 4°C (4.08°C, precisely), which explains why the explored climate mitigation targets start at 3.5°C.  

Table 2 summarizes the different options within the climate target and investment dimensions. In 

particular, the table provides the acronyms for the CCS deployment year which will be used in the graphs 

shown in Section 4 (“i” stands for investment). The scenario names are generated combining the target and 

the CCS year, e.g. 3.5C_i20 or3C_i40.7 

 

Climate target BAU, 3.5°C, 3°C, 2.5°C, 2°C, 1.5°C 

CCS first investment year 2020 (i20), 2040 (i40), 2060 (i60), 2080 (i80), no CCS investment (ioff) 

Table 2 – Scenario dimensions. 

                                                        
6
 The goal of the Paris Agreement is to “keep a global temperature rise this century well below 2 degrees Celsius 

above pre-industrial levels and to pursue efforts to limit the temperature increase even further to 1.5 degrees Celsius” 
(UNFCCC, 2015). 
7
 This naming scheme does not apply to the Business-as-Usual scenario, which is simply called “Baseline”. 
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Figure 2 shows the temperature increase over the century in the 26 scenarios converging to the six climate 

targets described above. It can be noted that, whereas all scenarios from 2°C upwards converge uniformly 

towards the relevant target, the 1.5°C scenarios show a broader pattern. These scenarios, in fact, are at the 

frontier of technical feasibility in WITCH, and with a delayed deployment of CCS the convergence can take 

place slightly above 1.5°C (from exactly 1.5°C in the i20 case to 1.6°C in the ioff case). Indeed, the deviation 

is limited and it does not prevent from fully accepting these scenarios in the analysis. 

 

 

Figure 2 – Global temperature increase with respect to the pre-industrial levels. 

 

The climate targets are reached via the application of a carbon tax on greenhouse gas (GHG) emissions. The 

tax starts in 2020 and grows exponentially in order to yield the desired temperature increase. As will be 

shown in the next section, the delayed or forbidden deployment of CCS plants causes by definition an 

increase in the mitigation costs, as it hinders a technology option which would be otherwise used. This 

implies an increase in the carbon tax if the same climate target is to be reached. Operatively, a common 

starting value has been fixed for the different climate targets (referring to the database of similar optimized 

scenarios) and then the growth rate has been recursively adjusted in order to reach the relevant 

temperature. No details are provided on the actual values implemented, as the economic focus will be put 

on the overall policy cost (shown in Section 4) rather than on the specific carbon tax values, which are not 

within the interests of this work. 
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Figure 3 shows the resulting GHG emission patterns in the different scenarios. Kyoto gases are considered, 

i.e. carbon dioxide, methane, nitrous oxide, and fluorinated gases. 8  

 

 

Figure 3 – Global GHG emissions. 

 
In 2015 global GHG emissions accounted for 50 GtCO2eq. In the baseline scenario GHG emissions grow up 

to about 100 GtCO2eq in 2080/2090, with a slight decrease towards the end of the century (94 GtCO2eq in 

2100). The same pattern is found in the 3.5°C scenarios, where emissions peak at 78 GtCO2eq in 2070/2080 

and then decrease to 70 GtCO2eq in 2100. The 3°C target entails that emissions remain substantially 

constant all over the century, with a peak at 58 GtCO2eq in 2040 and a smooth decrease down to around 

42 GtCO2eq in 2100. The 2.5°C target, instead, implies a constant emission decrease to about 

15-20 GtCO2eq starting in 2030/2040 after a few decades of relative constancy. The 2°C target requires an 

immediate and constant decrease, achieving a total net emission amount of few thousands of GtCO2eq in 

2100. Finally, the 1.5°C target would entail a sudden and dramatic cut of emissions by two or three times in 

the very first years, with a constant decrease down to zero or even net negative emissions in 2100. As will 

be discussed in the next section, the extraordinary fall in emissions after 2015 makes this set of scenarios 

practically infeasible in this design. However, it is not within the scope of this work to discuss about the 

                                                        
8
 The impact of non-CO2 gases is assessed via the Global Warning Potential technique. According to this scheme, each 

GHG is associated to a coefficient which quantifies its relative greenhouse power with respect to carbon dioxide. 
According to the last IPCC report (IPCC, 2014) the 100-year GWP is 28 for methane and 265 for nitrous oxide, while 
fluorinated gases have a GWP in the order of hundreds to thousands. 
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feasibility of this emission pattern and the policy that would make it possible. Here the focus is on 

understanding what role can be played by CCS in achieving these long-term targets and its technical and 

economic impacts with a multi-decadal perspective. 

 
 

4. Results 

 
It is interesting to start by observing how CCS deployment evolves at a global level in the scenario set, see 

Figure 4. In general, the progressively more and more ambitious emission targets imply a progressively 

more and more substantial rearrangement of the energy sector, and in particular of the power sector that 

is focused in this work. In particular, the role of low-carbon or no-carbon power technologies, among which 

CCS power plants,  progressively grows, until they dominate the sector in the more stringent scenarios. 

 

 

Figure 4 – Global CCS generation. 

 

In the baseline case, no CCS deployment is observed. This is quite a trivial result: if there is no carbon signal, 

there is no need to install a group of low-carbon technologies which are by far more expensive than the 

corresponding non-CCS ones. The carbon signal is too low in the 3.5°C scenarios as well, except for a 

negligible deployment in the last years of the century. From the 3°C downwards, instead, CCS is regularly 

installed. Figure 4 clearly shows that the delayed trigger to CCS deployment does have a considerable 
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effect: in all cases, as soon as CCS installation is permitted, it actually starts, with a constant growth over 

the following decades. It is interesting to note that under no cases can CCS capacity reach the level that is 

achieved if it can be deployed 20 years in advance. This is mostly due to the constraints affecting the 

capacity that can physically be installed over a five-year period, but it also highlights that CCS is an option 

that is fully exploited in the unconstrained scenarios, if available. It can also be noted that the CCS 

generation has a similar pattern across the scenario set, especially from 2.5°C to 1.5°C: in 2100, CCS 

generation reaches 113-134 EJ/yr in the i20 scenarios, 61-72 EJ/yr in the i40 scenarios, 29-35 EJ/yr in the 

i60 scenarios, and 8-10 EJ/yr in the i80 scenarios, respectively (by definition, it is zero in the ioff scenarios). 

Figure 5 provides a detail on the CCS generation in 2100. 

 

 

Figure 5 – Global CCS generation in 2100 by source. 

 

The graph, in addition to underlying that a late CCS deployment leads to a lower CCS generation, also 

shows that the three CCS power technologies (coal, gas, and biomass) provide quite a homogeneous 

contribution, even if late deployment seems to favor the BECCS technologies. The ioff scenarios are not 

shown here for the reasons explained above. 

What are the impacts on the overall electricity generation amount and mix? Electricity generation is shown 

in Figure 6. 
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Figure 6 – Global curtailed energy conversion. 

 

Electricity generation starts from 90 EJ/yr in 2015 and progressively grows over time in all scenarios (with 

the partial exception of the 1.5°C scenarios, which show a dramatic (and unlikely) decrease in the electricity 

generation associated to the emission pattern discussed in the previous section: it is not possible to 

massively rearrange the power sector in such a short period to meet with the mitigation requirement, 

therefore the only solution is to cut the overall generation. In the BAU scenarios, the final value in 2100 is 

376 EJ/yr. As a progressively increasing carbon tax is applied, the demand growth slightly slows down, at 

least until the 2.5°C scenarios: the 2°C scenarios show an opposite behavior, with a convergence in 2100 at 

around 400 EJ/yr, and even more so in the 1.5°C scenarios, which achieve the 450 EJ/yr area. 

These results highlight the two possible and contrasting patterns to achieve carbon mitigation. On the one 

hand, emissions can be reduced simply by reducing demand. On the other hand, emissions can be reduced 

by shifting energy demand from highly emitting to low emitting fuels or carriers. As the power sector shows 

more viable routes for decarbonization than other sectors, mitigation futures can arguably entail an 

electrification of the energy sector with a parallel decarbonization of the power sector. In the milder 

scenarios the first tendency prevails, while in the more stringent scenarios the opposite occurs. 

Figure 7 shows the CCS relative penetration in the electricity mix as resulting from the previous two figures: 

it can be noted that in the absence of deployment constraints, i.e. if investment is allowed from 2020, CCS 

technologies can reach about 30% in the electricity mix in 2100. 
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Figure 7 – Global CCS relative penetration in the electricity mix in 2100 by source. 

 

Figures 8 and 9 provide a more general view on the overall electricity mix in 2100. The former shows the 

absolute generation, while the latter focuses on the relative shares. 

In the baseline scenario, fossil fuels (without CCS) dominate the electricity mix, accounting for 50% of the 

total (coal 30%, gas 18%, and oil 2%). Nuclear accounts for 12% (substantially the same level as today), 

hydro 7%, while variables renewables (wind and solar) account for 30%, approximately two thirds from 

wind and one third from solar. The 3.5°C scenarios are characterized by a very similar electricity mix, simply 

with a 10%-shift from fossils to wind and solar. 

More impacts can be seen in the 3°C scenarios, i.e. where CCS technologies appear in a non-negligible 

amount. As already noted, the delayed deployment of CCS implies lower and lower shares for this 

technology in 2100. Its contribution is mostly compensated by renewables, nuclear, and also gas without 

CCS, which is still a viable technology for this mild climate target. This no longer happens in the more 

stringent climate targets. Figure 7 has already shown that in all these cases, CCS accounts for about 30% of 

the electricity mix in 2100 if its deployment is allowed starting from 2020. If CCS is constrained, there is no 

room for non-CCS technologies (apart from a negligible gas contribution in the 2.5°C scenarios) and the 

electricity mix tends to “converge” to a solution dominated by renewables (with about 35% wind onshore, 

10% wind offshore, 30% solar PV, and 5% solar CSP, i.e. 80% in total), with a complementary contribution of 

nuclear (12%) and hydro (8%).  
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Figure 8 – Global electricity mix in 2100: absolute generation. 
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Figure 9 – Global electricity mix in 2100: relative shares. 
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Concerning the latter result, it should be noted that such a huge penetration of renewables would imply a 

profound re-structuring of the electricity system. From a modeling point of view, it is not easy to cope with 

the system integration issues in IAMs, as the low temporal and spatial scales which characterize these 

aspects are in contrast with the need of providing long-term projections over an horizon of decades, 

considering aggregated annual quantities and focusing on large regions. However, it is not within the scope 

of this paper to discuss these topics: here it is sufficient to underline that the model considers huge 

investment in storage capacity and grid expansion to comply with this renewable deployment. The reader is 

referred to Carrara and Marangoni, 2017 for further details on the WITCH model and to Pietzcker et al., 

2017 for an overview of IAMs. 

In order to have a more dynamic view of the electricity mix without focusing on 2100 only, Figures from 10 

to 13 show the evolution of the electricity mix over time in selected years (2025, 2050, 2075, and 2100) for 

the two boundary groups of CCS deployment options, i.e. i20 (thus, the unconstrained CCS scenarios) and 

ioff (thus, the no CCS scenarios), for all the climate targets. BAU results are always reported for 

benchmarking purposes. In particular, Figures 10 (i20) and 12 (ioff) report the absolute generations, while 

Figures 11 (i20) and 13 (ioff) report the relative shares. 

These figures help visualize how coal, and then gas, are progressively phased-out in the mitigation 

scenarios. This happens smoothly over the decades in the milder mitigation scenarios, quite strongly after 

2025 in the more stringent scenarios. Naturally, the phase-out is more urgent for coal than for gas, as the 

former is characterized by specific emissions which are about twice as those of the latter. In the i20 

scenarios, fossil phase-out is compensated by the progressive CCS penetration, in addition to the massive 

deployment of renewables. 

Furthermore, Figures 8 and 9 highlighted that biomass without CCS is barely present in the electricity mix in 

2100. Indeed, Figures 10 to 13 show that this technological solution does have a non-negligible penetration 

in the first decades, but in the long run it is phased out, underlining that biomass is appealing only if 

coupled with CCS technologies in order to allow negative emissions. 

Finally, it has already been noted that the 1.5°C scenarios would imply a huge cut in the electric generation 

immediately after 2015 in order to meet with the carbon mitigation requirements. Indeed, this implies an 

immediate retirement of most (i20) or all (ioff) of fossil plants. As a result, the 2025 electricity mixes are 

(almost) completely characterized by a carbon free generation deriving from hydro, nuclear, and variable 

renewables. It has already been discussed that this scenario is really extreme, but it is interesting to explore 

these barely-feasible conditions for comparison purposes. 
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Figure 10 – Global electricity mix over time in the i20 scenarios (unconstrained CCS): absolute generation. 
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Figure 11 – Global electricity mix over time in the i20 scenarios (unconstrained CCS): relative shares. 
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Figure 12 – Global electricity mix over time in the ioff scenarios (no CCS): absolute generation. 
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Figure 13 – Global electricity mix over time in the ioff scenarios (no CCS): relative shares. 
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Figure 14 shows the policy costs in the different scenarios. Policy costs are evaluated as the cumulated GDP 

loss over the century with respect to the cumulated GDP in the baseline case, considering a discount factor 

of 2.5%. Values are shown on the same scale, in order to facilitate a comparison of the orders of magnitude 

across the different scenarios. 

 

 

Figure 14 – Policy costs. 

 

Policy costs in the 3.5°C scenarios are negligible, around 0.2%: after all, the stringency of the target is very 

mild, so the required changes to the economic and energy systems are almost null. As discussed in the 

previous pages, CCS is not deployed in these scenarios, so results are not differentiated per CCS 

deployment year within this target. A moderate difference emerges in the 3°C scenarios, where policy costs 

are around 0.7-1%. In particular the ioff scenario has a policy cost which is 35% higher than the i20. In the 

2.5°C scenarios, policy costs range between 1.9% and 2.7%, with the no CCS case costing 38% more than 

the unconstrained CCS scenarios. If reaching 2.5°C entails relatively moderate costs, achieving the Paris-

compatible 2°C target implies much higher expenses. If CCS can be deployed with no constraints, the 

aggregated GDP loss is 4.7%. This values increases with a progressively delayed CCS deployment, up to 7.1% 

in the no CCS case, 51% more than the former. Finally, the profound revolution which is required to achieve 

the 1.5°C target has inevitable enormous effects on the policy costs. With a fully unconstrained technology 

portfolio the policy cost is about 16.1%, while it rises up to 27.6% in the corresponding ioff case, i.e. 72% 

more than the unconstrained case. Therefore, not only is the delayed deployment of CCS impacting on the 

policy cost, but this impact increases in relative terms with the policy stringency.  
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Finally, a brief focus on the European prospects is reported. Indeed, Europe does not have a considerable 

storage potential, additionally it is characterized by a huge renewable potential and technology maturity. 

These two factors imply that CCS will not be a main mitigation option in this region according to the WITCH 

scenarios. 

Figure 15 reports the CCS shares in the electricity mix in 2100 in the explored scenarios. As noted in 

Figure 7 discussing the global results, CCS does not penetrate the market in the BAU and the 3.5°C 

scenarios. Some CCS generation appears in the 3°C scenarios, with a good distribution across the three 

considered technologies. Differently from the global results, however, there is no variability as a function of 

the CCS deployment year: CCS penetration is around 2-3% independently of when CCS installation is 

allowed. This insensitivity to the installation year is found in the more stringent policy scenarios as well, 

where, furthermore, CCS penetration i) does not increase significantly with mitigation stringency, and ii) is 

almost completely deriving from biomass. 

The negligible role played by CCS in the European electricity mix is evident in Figure 16, which shows the 

whole electricity mix in the explored scenarios. Already in the BAU case, renewables dominate the long-

term mix, achieving some 70% (about 40% wind and 20% solar, mostly PV, and 10% hydro), which is added 

to about 20% of nuclear. Coal and gas sum up to 10% only. Naturally the fossil contribution decreases in the 

3.5°C and disappears in the more stringent scenarios, only partially substituted by CCS, as noted, whereas 

the remaining technologies essentially maintain their very same shares across all scenarios. 

 

 

Figure 15 – European CCS relative penetration in the electricity mix in 2100 by source. 
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Figure 16 – European electricity mix in 2100: relative shares
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5. Conclusions 

CCS is considered one of the key technologies in the perspective of climate change mitigation. Its main 

advantage consists in eliminating carbon dioxide emissions without shifting away from the fossil-based 

paradigm which still characterizes the power sector. However, in reality many issues still hinder its 

diffusion, such as safety concerns about storage sites, public acceptance, high technology costs, and the 

absence of a common regulatory framework and of business models. 

The main aim of this work is to explore the techno-economic consequences that a delayed deployment of 

CCS can have on the electricity mix and on the economic system as a whole. Five deployment options have 

been considered with reference to the starting year from which CCS installation is allowed: 2020 (i.e. the 

unconstrained scenario, as global CCS capacity is practically negligible as of today), 2040, 2060, and 2080, in 

addition to the no CCS scenario. These five scenarios have been explored over a wide set of policy targets, 

ranging from the no policy or Business-as-Usual, which leads to 4°C as a temperature increase in 2100 with 

respect to the pre-industrial levels, to 1.5°C. 

Scenarios confirm the consolidated result in the literature that CCS is likely to play a major role in the 

decarbonization of the electricity sector at a global level, as it is installed in all scenarios with a policy target 

equal to 3°C or less. In all these cases, as soon as the investment in CCS is allowed, this option is 

immediately activated by the optimization model. Due to expansion constraints, the delayed installation 

prevents CCS from reaching the optimal level which would be achieved in the unconstrained scenarios. 

This implies a progressively lower penetration in the electricity mix as the deployment is delayed: global 

CCS penetration is around 25-30% in 2100 in all scenarios from 1.5°C to 3°C, gradually decreasing to zero as 

the deployment is delayed or not allowed. The contribution from coal, gas, and biomass is quite well 

balanced. The impact on the overall electricity demand is such that it diminishes with the progressively 

delayed CCS deployment. This decrease is indeed quite little if mitigation is limited to 2°C (the difference is 

lower than 5% in 2100 from the no CCS to the unconstrained CCS scenario), while it is more marked in the 

1.5°C scenarios, where the difference in 2100 between the two extreme investment cases (i.e. i20 and ioff) 

is around 15%. The absence of CCS is mostly compensated by renewables (notably wind and solar), with 

also a partial increase in nuclear. 

Removing (partially or totally) CCS from the optimal electricity mix has inevitable effects on the overall 

economic performance. The analysis on the changes in policy costs has shown that, within the specific 

policy targets, the no CCS scenario is characterized by a cumulative GDP loss which is averagely 50% higher 

than the corresponding unconstrained CCS scenarios, thus proving the strong economic impact of the 

delayed CCS deployment. 

Special attention has also been put on Europe. Indeed, this region is characterized by low availability of 

storage sites for CCS and by high renewable potential and technology maturity. This results in a very low 

CCS penetration in all scenarios: even in unconstrained conditions and in the most stringent scenarios, CCS 

never exceeds 5% in the electricity mix in 2100. The obstacles to CCS penetration are thus much more 

relevant on a global level as a whole than specifically on a European level. 
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Abstract 

 

Nuclear is considered as a valuable option for the decarbonization of the power generation, as it is a 

no-carbon, yet commercially consolidated technology. However, its real prospects are uncertain: if some 

countries, especially in the non-OECD area, have been extensively investing in nuclear, many OECD 

countries, which host the vast majority of operational reactors worldwide, feature old fleets which will not 

be replaced, as phase-out policies are being implemented. 

Research scenarios often consider polarized conditions based on either a global unconstrained nuclear 

development or a generalized phase-out. The main aim of this work is instead to explore the techno-

economic implications of policy-relevant scenarios, designed on the actual nuclear prospects in the world 

regions, i.e. mainly differentiating policy constraints between the OECD and the non-OECD regions. 

The analysis, conducted via the Integrated Assessment Model WITCH, shows that nuclear generation 

constantly grows over the century, even if in general the nuclear share in the electricity mix does not 

significantly change over time, both at a global and at a European level (apart from a temporary increase in 

the first part of the century). Over time, and especially if constraints are applied to nuclear deployment, the 

nuclear contribution is compensated by renewables (mainly wind and solar PV) and, to a lower extent, by 

CCS (only marginally in the EU). 

The policy costs related to the nuclear phase-out are not particularly high (0.4% additional global GDP loss 

with respect to the unconstrained policy scenario), as they are almost completely compensated by 

innovation and technology benefits in renewables and energy efficiency. Phase-out policies applied only to 

the OECD regions do not entail any additional policy costs, while non-OECD regions marginally benefit from 

lower uranium prices. A sudden shutdown of nuclear reactors in the OECD regions results in a doubling of 

these losses and gains. 
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1. Introduction 

Meeting with increasing energy demand via low-carbon solutions is a major goal for the 21st century in 

order to avoid detrimental effects on climate (IPCC, 2014). In 2015, almost all world countries signed the 

Paris Agreement committing to limiting to 2°C the global temperature increase in 2100 with respect to the 

pre-industrial levels and to pursuing efforts to reach 1.5°C, in order to further contain potential negative 

impacts (Schellnhuber et al., 2016). Clearly, these targets are very ambitious, since they entail profound 

technological and economical efforts as well as political coordination among countries. 

Nuclear is widely recognized as one of the main technologies which will play an important role in 

decarbonizing the power sector (Krey et al., 2014 and Koelbl et al., 2014). Its main advantage is the 

possibility to couple technological maturity (nuclear has commercially been exploited since the 50s of the 

20th century) with virtually no carbon dioxide emissions and without the dispatchability issues that affect 

variables renewable energies such as wind and solar.1  

Nuclear power was characterized by a huge development especially in 70s and 80s. The accidents in Three 

Miles Island, USA (1979) and, above all, in Chernobyl, Former Soviet Union (1986) determined a substantial 

fall in the investments, mostly due to the safety concerns that were raised by those events. A general 

renaissance took place during the first decade of the 21st century, but the accident at the Fukushima-

Daiichi, Japan (2011) revived public concerns about safety, which ultimately resulted in a reconsideration of 

the nuclear expansion policies in many countries of the world (Wittneben, 2012). Concerns about nuclear 

proliferation, waste management that is still an open issue, the shortage of qualified workforce in the 

reactor construction and high or uncertain costs (at least in some areas of the world) are the other main 

points representing an obstacle to nuclear diffusion (Ahearne, 2011). The long construction time 

(8-10 years) and operational life of plants (40+ years) make the uncertainty concerning electricity demand 

and public acceptance particularly relevant in discouraging investments (Cardin et al., 2017). 

These factors jeopardize the future prospects of nuclear energy. As will be discussed in Section 3, in general 

two opposite tendencies are found worldwide, which roughly distinguish OECD and non-OECD countries. In 

OECD countries (with the main exception of the Republic of Korea), on the one hand many nuclear reactors 

are approaching the end of their operational life and on the other hand political, social, and economic 

constraints hinder the construction of new plants. Therefore, even in presence of massive investments to 

extend the operational lifetime of reactors (from about 40 to about 60 years), the prospects in these 

countries are controversial. Instead, in non-OECD countries, and especially China, India, and Russia, nuclear 

is characterized by high momentum and ambitious expansion plans are in place for the next decades. 

In this context, the main objective of this work is to investigate the actual prospects of nuclear and their 

consequent impacts on the electricity mix and the policy costs, taking into consideration real-world aspects 

such as the policies implemented by countries and the ageing of reactors. This allows exploring more 

credible and meaningful scenarios, whereas assessment exercises often consider “digital” options only, i.e. 

either a global unconstrained nuclear expansion or global phase-out (Rogner and Riahi, 2013 and 

Hof et al., 2019). The exercise is carried out with the Integrated Assessment Model (IAM) WITCH. 

                                                        
1
 It is true, though, that the functioning and huge dimensions of reactors (averagely around 1000 MW, up to 1600 MW 

in the latest models) result in a general inflexibility, so that a plant normally operates at full rate 7-8000 hours per year 
with limited load variations. These aspects could be addressed by developing smaller plants, the so-called Small 
Modular Reactors (SMRs), whose commercial maturity, however, is yet to come (Budnitz et al., 2018). 
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The paper is structured as follows. Section 2 describes the WITCH model, and especially how nuclear is 

modeled therein. Section 3 discusses more in detail the nuclear global scenario and the policy context, and 

in particular the policies implemented or planned by world countries. Section 4 describes the scenario 

design which has been defined according to the policy landscape described in the previous section. 

Section 5 presents the main results of the analysis. Section 6 finally concludes. 

 

2. Methodology 

2.1 The WITCH model2 

The tool adopted in this research is the World Induced Technical Change Hybrid (WITCH) model. WITCH is a 

dynamic optimization Integrated Assessment Model designed to investigate the socio-economic impacts of 

climate change over the 21st century (Bosetti et al., 2006 and Emmerling et al., 2016). It combines a top-

down, simplified representation of the global economy with a bottom-up, detailed description of the 

energy sector, nested in a Constant Elasticity of Substitution (CES) structure (Figure 1). The model is defined 

on a global scale: countries are grouped into thirteen aggregated regions, which strategically interact 

according to a non-cooperative Nash game. The thirteen economic regions are USA (United States), 

OLDEURO (Western EU and EFTA countries3), NEWEURO (Eastern EU countries), KOSAU (South Korea, 

South Africa, and Australia), CAJAZ (Canada, Japan, and New Zealand), TE (Transition Economies, namely 

Russia and Former Soviet Union states, and the non-EU Eastern European countries), MENA (Middle East 

and North Africa), SSA (Sub-Saharan Africa except South Africa), SASIA (South Asian countries except India), 

EASIA (South-East Asian countries), CHINA (People’s Democratic Republic of China and Taiwan), LACA 

(Latin America and Central America) and INDIA (India).4 As the model acronym suggests, technological 

change is endogenously modeled in WITCH, and it regards energy efficiency and the capital cost of specific 

clean technologies. Global prices of fossil fuels are endogenously calculated, while the model is coupled 

with the Global Biosphere Management Model, GLOBIOM (Havlík et al., 2014) to describe land use. 

GLOBIOM provides biomass supply cost curves to WITCH for different economic and mitigation trajectories. 

This allows assessing woody biomass availability and cost. 

The CES structure reported in Figure 1 shows how the top-down aggregated economic model is linked with 

the disaggregated energy sector. In particular, energy services (ES) and the aggregated capital and labor 

node (KL) are combined to produce the final economic output of the model. Energy services are provided 

by the combination of the capital of energy R&D (RDEN), which is a proxy of energy efficiency, and the 

actual energy generation (EN). This node models the fact that the same energy services can be obtained 

through a lower level of energy input if there is higher energy efficiency. The EN node is divided between 

the electric (EL) and non-electric sector (NEL), with a progressive disaggregation down to the single 

technologies. The electric sector has a higher detail, while the non-electric sector mostly reports nodes 

which collect consumption from all the non-electric usages of one specific energy source, except for the 

road passenger and road freight transport sectors, which are the only demand sectors being explicitly 

modeled5 (see Bosetti and Longden, 2013, and Carrara and Longden, 2017). 

                                                        
2
 For the sake of simplicity, this section has almost entirely been taken from the CCS paper. 

3
 EFTA (European Free Trade Association) features Iceland, Liechtenstein, Norway, and Switzerland. 

4
 The aggregated results for Europe derive from the combination of OLDEURO and NEWEURO. 

5
 These sectors are not shown in the CES scheme. 
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Figure 1 – The CES structure in WITCH. 

 

Focusing on the electric sector, the hydroelectric technology is found first (ELHYDRO), which is essentially 

exogenous in the model. The other technologies converge to the EL2 node, which is divided between two 

further nodes: EFLFFREN, i.e. the combination of fossils and renewables, and ELNUKE&BACK, i.e. the 

combination of nuclear and backstop. The fossil node (ELFF) has three group of technologies: 

i) coal&biomass (ELCOALBIO), further divided into pulverized coal without CCS (ELPC), pulverized biomass 

without CCS (ELPB), integrated gasification coal with CCS (ELCIGCC), and integrated gasification biomass 

with CCS (ELBIGCC); ii) oil, only without CCS (ELOIL); iii) gas (ELGAS), with and without CCS (ELGASTR and 

ELGASCCS, respectively). Variable renewable energies (ELW&S) have i) wind (ELWIND), further divided 

between onshore (WINDON) and offshore (WINDOFF); ii) solar PV (ELPV); iii) solar CSP (ELCSP). Nuclear and 

backstop feature traditional fission nuclear (ELNUKE) and a backstop technology (ELBACK). The latter 

models a hypothetical future technology which generates electricity with no fuel costs and no carbon 

emissions, although characterized by high capital costs. It can be interpreted as an advanced nuclear 

technology, for instance nuclear fusion or advanced fast breeder fission reactors. However, this technology 

is not considered in the scenarios explored in this work. Concerning the non-electric sector, the first 

distinction is between traditional biomass (TradBiom), coal (COALnel) and the aggregated node formed by 

oil, gas, and modern biomass (OGB), which precisely features gas (GASnel), traditional biofuels (Trad Bio), 

and the combination (OIL&BACK) between oil (OILnel) and a non-electric backstop technology, i.e. 

advanced biofuels (BACKnel).  

The CES structure tries to capture from a modeling point of view the preference for heterogeneity that is 

experienced in the real world, where the choice of investing in energy technologies does not normally 

depend on economic considerations only. The numbers reported in the CES scheme under the specific 
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nodes indicate the relevant elasticity of substitution. As suggested by the name, this value quantifies the 

level of substitutability between the sub-nodes that converge to the specific node. Zero elasticity means 

that the production factors are not substitutable and thus they are summed in fixed shares. Infinite 

elasticity means that the production factors are completely interchangeable and thus the competition 

between the two occurs on an economic basis only. Intermediate elasticities result in an intermediate 

behavior. More details concerning the CES structure can be found in Carrara and Marangoni, 2017. 

 

2.2 Nuclear modeling 

The investment cost for new nuclear plants is 4709 $/kW6. The same cost is applied to all world regions, 

even if in reality some differences may be found. Future model improvement will differentiate costs across 

regions. O&M costs do vary across regions, instead. Only fixed O&M costs are explicitly considered, which 

are comprised between 160 $/kW and 220 $/kW, while no variable O&M are accounted for. However, 

waste management and storage costs are explicitly considered: they start at 0.1 c$/kWh in 2015 and 

increase slightly more than linearly with the relative increase in nuclear generation (MIT, 2003), which is a 

direct proxy of waste production. Uranium ore is considered sufficiently abundant to meet the increasing 

nuclear demand over the century, and in particular reserves are considered sufficiently large at prices 

below 350 $/kg, i.e. the level at which reprocessing spent fuel and fast breeder reactors become 

competitive, which would prevent any further rise in the uranium price (Bunn, 2005). The process of 

conversion, enrichment, and fuel fabrication of the uranium ore is also taken into account, and the relevant 

cost is fixed to 300 $/kg (MIT, 2003). The efficiency of nuclear power plants is 35%, the capacity factor is 

85%, while the standard lifetime is 40 years (Tavoni and van der Zwaan, 2011). 

  

3. Nuclear global landscape 

As of November 30, 2018, there are 454 operational reactors in 31 countries worldwide, with an equivalent 

net capacity of 400 GW, while 54 reactors are under construction in 18 countries (4 of which not included 

in the previous 31), with an equivalent net capacity of 55 GW (IAEA, 2018).7,8 Additional 26 countries have 

decided or have been considering to invest in nuclear, even if no reactors are practically under construction 

yet (Budnitz et al., 2018). Figure 2 shows the global situation in terms of operational and under 

construction rectors, also specifying the age of the former, grouping countries according to the WITCH 

regions. In the following, a brief description of the current status and the implemented policies is provided 

for each region. 

The USA have 98 operational reactors, i.e. the highest number worldwide. The American fleet is also the 

oldest, as the average reactor age is around 38 years, i.e. close to the reference operational life of 40 years. 

On the other hand, only two reactors are under construction, expected to come online in 2021 and 2022 

respectively (Gattie et al., 2018). This means that the US are going to face severe ageing issues in the 

coming decades. Indeed, as mentioned in the Introduction, the operational lifetime of a nuclear reactor can 

normally be extended from 40 to 60 years, if dedicated upgrade and revamping works are carried out 

                                                        
6
 Costs are expressed in USD2015. 

7
 These figures indicate that the average capacity for each reactor is about 1 GW. This will implicitly be assumed in the 

following: capacity will explicitly be specified only if different from this reference value. 
8
 Henceforth, the reference IAEA, 2018 will implicitly be assumed for all statistical data if not differently specified. 
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(Perrier, 2018). This strategy is extensively applied in the US (Volk et al., 2019), and most reactors have 

already obtained the relevant authorization (Davis, 2012). Still, in the absence of investment in new 

reactors, the retirement of the existing ones will begin around 2030 and will result in a complete phase out 

in some 20 years (Gattie et al., 2018). 

 

 

Figure 2 – Regional distribution of nuclear reactors and their age. 

 

Similar conditions occur in the OLDEURO region, i.e. in Western Europe. Here the operational reactors are 

112 with an average age of 35 years, whereas only two reactors are under construction, specifically in 

France (Flamanville) and Finland (Olkiluoto). Construction works for additional two reactors will shortly be 

started in the United Kingdom (Hinkley Point). All these four plants are EPR (European Pressurized 

Reactors) of 1.6 GW of net capacity each. With its 58 reactors, France is the country which relies most on 

nuclear: this technology accounted for about 71% of the total national electricity generation in 2017. The 

plan would be to decrease this share to 50% in 2025, but this target is unlikely to be met (Volk et al., 2019). 

Most likely, life extension programs will be implemented. In 2010, Germany had 17 operational reactors 

and approved a policy allowing the extension of the reactors operational lifetime by averagely 12 years. 

The Fukushima accident in 2011 determined a radical change: the oldest 8 reactors were immediately shut 

down, while the remaining 9 will be closed within 2022, well before their planned operational end 

(Rogner, 2013). Most of the other countries have been implementing similar yet milder phase-out policies, 

as early retirement is not normally considered and life extensions are often planned or applied. These 

countries are Sweden (8 reactors), Belgium (7), Spain (7), Switzerland (5), and the Netherlands (1), which 

will all phase out within the next twenty years. The same applies to Finland apart from the plant under 

construction in Olkiluoto (its four operational plants are already about 40 years old). The United Kingdom 

plans to phase out its 15 plants (accounting for 9 GW) within 2030, but, apart essentially from France, it is 

the only country in the region considering nuclear as the main carbon mitigation technology, so that 16 GW 
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of new installations are planned in the next years (Volk et a., 2019). All in all, a strong capacity reduction is 

easily forecastable in this region in the near future. 

A similar situation is found in NEWEURO, i.e. Eastern Europe, which features 19 operational reactors, with 

an average age of almost 30 years, and two reactors under construction (in Slovakia). Lithuania, Bulgaria 

and Slovakia had partly to shut down their old plants as one of the conditions to be admitted to the EU 

(Volk et a., 2019). The remaining plants will progressively be phased out in the next decades. 

The CAJAZ region includes the country that obviously has most been affected by the Fukushima accident, 

i.e. Japan. Nowadays, 42 of the 54 existing plants in 2011 are still considered operational (while two are 

under construction), even if only 5 have generated electricity in 2017, whereas the remaining 37 are still 

waiting for decisions on their future (Volk et al., 2019). However, the Japanese government still aims at 

achieving a nuclear share in the electricity mix of 20-22% in 2030 (WNA, 2018a), i.e. slightly below the pre-

Fukushima levels, as the share was equal to 26% in 2010 (IEA, 2012). Canada essentially replicates the 

conditions of the other Western countries: old reactors, no new constructions ongoing, and investment in 

extending the operational life.9 

The KOSAU region is quite peculiar within the OECD regions. The core country here is the Republic of 

Korea. This country has 24 relatively recent reactors (the average age is 21 years) and it has strongly been 

investing in nuclear: 5 reactors are under construction and plans are to continue along this path in the next 

decades, which makes the Republic of Korea the only Western country strongly investing in nuclear without 

major issues. South Africa has two operational reactors which are 33 and 34 years old, respectively. Plans 

to build new capacity within 2030 have been suspended, therefore only life extension interventions may 

reasonably be considered in this country for the near future (WNA, 2018b). 

Transition Economies (TE) face similar problems as Western countries in terms of ageing of nuclear 

reactors, as most reactors were built during the Cold War in the 70s and 80s and are currently undergoing 

works for life extension (Volk et al., 2019). However, considerable investments in new capacity are in place, 

especially in Russia (6 reactors are under construction), but also in Ukraine (2), Belarus (2), and Turkey (1), 

which allows forecasting optimistic futures for nuclear in this region. 

Middle East and North Africa (MENA) is a “young” nuclear region. The first plant was inaugurated in the 

Islamic Republic of Iran in 2011, while 4 reactors are under construction in the United Arab Emirates, with 

works expected to progressively end in the very next years. No other countries have implemented or 

planned investments, however. 

Sub-Saharan Africa except South Africa (SSA) and South-East Asian countries (EASIA) do not have any 

operational nor under construction reactors.10  

South Asian countries (SASIA) have considerably been investing in nuclear. Pakistan has a very recent fleet, 

as 3 of its 5 reactors were inaugurated in the last decade, and two additional reactors are under 

construction. Two reactors are also under construction in Bangladesh. 

The same applies to the main other South Asian country, that is an independent region in WITCH, i.e. 

INDIA. 22 operational reactors with an average age of 23 years and 7 reactors under construction highlight 

bright prospects for nuclear in this country. 

                                                        
9
 Nuclear power plants are not present in New Zealand, and no different plans are in place. The same will apply to 

Australia in the KOSAU region. 
10

 For an overview on the nuclear debate in the EASIA countries, see Putra, 2017. 
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A similar and even more positive scenario is found in CHINA: its 46 reactors have an average age of 7 years 

and 11 plants are under construction. Similarly to India, huge development can be predicted for the next 

decades, as nuclear is considered an excellent technology to cope with the enormous growth in energy 

demand while also meeting with the climate mitigation requirements. For this region, it should be noted 

that Taiwan is a nuclear country: here prospects are less bright, as the four operational reactors are 

approaching the age of 40 and the construction of two reactors has recently been suspended.11 It is clear, 

however, that the dimensions of this country are not such as to affect the overall evaluation of the CHINA 

region. 

Finally, Latin and Central America (LACA) features three countries with nuclear power plants, i.e. Argentina, 

Brazil, and Mexico. There are 7 operational reactors in the region, with quite a high average age (28 years). 

Two reactors are under construction, and plans (especially in Argentina, see WNA, 2018c) are to continue 

investing in this technology. Hence, the nuclear share in this region is not very high, but it is expected to at 

least maintain its levels in the coming future. 

To conclude, this overview has described in detail the general distinction between the OECD and non-OECD 

regions (with the exception of the Republic of Korea)12 that had been anticipated in the Introduction: 

optimistic nuclear prospects can be expected for most non-OECD countries that have nuclear power, and 

especially Russia, India, and China, while more complicated futures can be estimated for OECD countries. 

 

4. Scenario design 

The nuclear landscape described in the previous section is the main reference for the definition of the 

scenarios explored in this exercise. Indeed, the coherent picture which characterizes the OECD and the 

non-OECD countries allows considering a limited set of scenarios, which are five in total. 

First of all, a baseline or Business-as-Usual (BAU) scenario has been run as a benchmark. No mitigation 

policies nor other technological constraints are considered in this scenario. 

The other four scenarios are explored in a mitigation policy compatible with the Paris targets. In particular, 

a uniform carbon tax is applied in all regions starting from 2020 so as to reach a global cumulative amount 

of CO2 emissions equal to 1000 Gt in the period 2011-2100. This would limit the temperature increase in 

2100 with respect to the pre-industrial levels below 2°C with a likely chance (IPCC, 2014). In particular, this 

corresponds to a temperature increase of 1.8°C in WITCH, whereas the baseline scenario leads to a 

temperature increase of about 4°C. In terms of annual global CO2 emissions, the policy scenarios entail a 

constant decrease from 36 Gt/yr in 2015 down to -8 Gt/yr in 210013, while the no policy scenario has CO2 

emissions constantly growing to about 75 Gt/yr until around 2080, then remaining substantially constant 

until the end of the century.14 

One scenario (CTAX) is run without any other constraints, and in particular nuclear energy is freely 

optimized by the model in all regions. On the opposite, one scenario (CTAX_global_phase-out) considers a 

                                                        
11

 These two reactors formally still appear as under construction in IAEA, 2018, however. 
12

 The exception of the Republic of Korea among the OECD countries will implicitly be assumed henceforth with no 
further specification. OECD regions in this work will thus be USA, OLDEURO, NEWEURO, and CAJAZ. 
13

 Negative emissions can be reached via biomass CCS and afforestation in WITCH. 
14

 The overall greenhouse gas emissions (GHG) start at 50 GtCO2eq/yr and increase to 93 GtCO2eq/yr in 2100 in the 
baseline scenario, while they decrease to -3 GtCO2eq/yr in the policy scenarios. 
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nuclear phase-out in all regions of the world, considering a life extension to 60 years for all reactors.15 A 

more realistic scenario (CTAX_OECD_phase-out) applies the phase-out policy to the OECD countries only, 

i.e. to the USA, OLDEURO, NEWEURO, and CAJAZ regions, while no constraints are applied to non-OECD 

regions. The last scenario (CTAX_OECD_switch-off) considers a more extreme situation where nuclear is 

immediately and completely abandoned in the OECD regions starting from 2020. 

  

5. Results 

Figure 3 shows the global evolution of the electricity generation from nuclear in the different scenarios. It 

can immediately be noted that nuclear generation grows in all scenarios in the long run (it starts at 10 EJ/yr 

in 2015), with the obvious exception of the CTAX_global_phase-out scenario, where by definition nuclear 

generation tends to zero over time. The unconstrained CTAX scenario implies a higher generation than the 

baseline scenario, as the policy stringency would further trigger higher investments in low-carbon 

technologies. However, the model considers nuclear as a worthwhile technology even in the absence of 

carbon signal, therefore the BAU scenario too is characterized by a robust growth. 

 

 
Figure 3 – Global nuclear generation. 

                                                        
15

 Section 3 discussed that this will be the case in most countries of the world. In Germany, all nuclear reactors will be 
shut down in 2022, but this roughly compensates with the intentions by the United Kingdom to keep investing in 
nuclear. Therefore the 60-year extension hypothesis can be considered acceptable in the OLDEURO region as well. 
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The constraints on nuclear growth in the OECD countries are such that nuclear generation is significantly 

lower in the CTAX_OECD_phase-out and the CTAX_OECD_switch-off scenarios than in the unconstrained 

CTAX scenario, essentially replicating the BAU results. In the CTAX_OECD_switch-off, in particular, nuclear 

generation starts to grow immediately after the 2020 shock, implying that the growth in the non-OECD 

countries more than compensates the generation end in the OECD countries. Indeed, the lower uranium 

demand in the OECD countries related to these scenarios implies lower fuel prices for non-OECD countries. 

This boosts nuclear generation considerably higher than in the CTAX scenario, see Figure 4. 

 

 

Figure 4 – Nuclear generation in non-OECD regions. 

 

The global electricity demand does not markedly change among the four policy scenarios, even if there is a 

considerable difference between them and the BAU scenario, see Figure 5. This graph also indirectly 

highlights an important aspect of decarbonization. In general decarbonization can be achieved via two main 

strategies. The first one is to reduce emissions simply by reducing energy demand. This is the most 

straightforward strategy, as it does not entail a profound reconfiguration of the energy sector, and is what 

happens in the policy scenarios in the short term: here the electricity demand grows very mildly, compared 

to a more consistent growth in the BAU scenario. However, whereas the increase in the BAU scenario is 

fairly regular over the century, in the policy scenarios the electricity demand starts growing very fast after 

about 2040 and it overcomes the BAU levels around 2070/2080. This happens because the second 

decarbonization strategy is now deployed, which consists in increasing the share of electricity in the overall 

secondary energy demand with a parallel decarbonization of the electricity sector (which in general 

guarantees the easiest decarbonization routes). 
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Figure 5 – Global electricity demand across scenarios. 

 

 

Figure 6 – Global nuclear share across scenarios. 
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The evolution of the nuclear share in the electricity generation mix (Figure 6) naturally derives from the 

combination of Figure 3 and Figure 5. The 2015 level of 11% is more or less constant over the century in the 

BAU scenario, as the nuclear growth is substantially in line with the overall electricity demand growth 

(around 2% per year). The CTAX_global_phase-out is obviously characterized by a constant decrease to 

zero, while all the other policy scenarios show a marked increase until about 2040 (to a maximum level 

which is progressively lower as the stringency of the constraints on nuclear increases, i.e. 25% in the CTAX 

scenario, 19% in the CTAX_OECD_phase-out scenario, 16% in the CTAX_OECD_switch-off scenario), which is 

followed by a decrease down to the initial levels towards the end of the century. 

This happens because of the tremendous growth of renewables, notably wind and solar PV, which 

progressively gain market shares and become dominant in the second part of the century. This fact is 

clearly visible in Figure 7 and Figure 8, which show the evolution of the electricity mix at a global level in 

four selected years (2025, 2050, 2075, and 2100): the former shows the absolute generation, while the 

latter shows the relative shares. 

First of all, both figures highlight that the carbon tax applied in the policy cases is such that the electricity 

sector is already fully decarbonized by 2050, when only a residual share of gas without CCS still appears in 

the electricity mix. This obviously does not apply to the BAU scenario, where fossils do not suffer from any 

constraints and they still maintain almost half of the generation portfolio in 2100, despite a growth in 

renewables which progressively become attractive even in the absence of the carbon tax. 

The behavior of electricity demand has already been discussed above: in 2025 and 2050 this is higher in the 

BAU scenario than in the policy ones, in 2075 the levels are similar, while in 2100 the policy scenarios show 

a much higher demand. Here it is interesting to note an additional point: it has been said that the overall 

demand is similar across the policy scenarios, but a more precise observation would highlight that it grows 

with respect to the unconstrained CTAX scenario if constraints (phase-out or switch-off) are applied to the 

OECD countries,  and even more if phase-out regards all regions. This happens because the constraints on 

nuclear imply higher investments in the other low-carbon technologies. Since WITCH features an 

endogenous technological modeling of the investment cost for renewables – in particular, wind onshore, 

wind offshore, solar PV, and solar CSP, while this does not apply to hydro and CCS – this implies 

considerable innovation benefits for wind and solar technologies, that are thus able to reach higher 

generation levels, which more than compensates the reduction or the absence of nuclear generation. As a 

result, the aggregated penetration of solar and wind technologies reaches 35% of the electricity mix in 

2100 in the BAU scenario, 54% in the CTAX scenario, 59% in the CTAX_OECD_phase-out as well as the 

CTAX_OECD_switch-off scenarios, and  67% in the CTAX_global_phase-out scenario. 

The sever impact that such a considerable penetration of variable renewable energies would have on the 

energy system is a topical and well-known issue. The stability of electrical grid requires that demand and 

supply be constantly in balance and this is not trivial if generation comes from plants fueled with a variable 

energy source. Abstracting from the technical aspects, it is not easy to model this issue in Integrated 

Assessment Models: these phenomena take place on very small spatial and temporal scales, whereas IAMs 

generate scenarios which span an horizon of decades, providing average annual quantities and considering 

large, aggregated regions. It is not within the scope of this paper to thoroughly discuss such an aspect. To 

this purpose, the reader is referred to Carrara and Marangoni, 2017 for further details on the WITCH model 

and to Pietzcker et al., 2017 for an overview of IAMs. However, one effect, i.e. the deployment of huge 

storage capacity to sustain the renewable expansion, can be easily highlighted: see Figure 9 which shows 

the power capacity evolution in the same selected years as Figure 7 and Figure 8. 
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Figure 7 – Global electricity mix over time: absolute generation. 

 



 
74 

 

 

 

Figure 8 – Global electricity mix over time: relative generation shares. 
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Figure 9 – Global electricity mix over time: capacity. 
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It can be noted that, whereas considerable storage capacity is required in the second half of the century (in 

addition to a similar growth in the electric infrastructure, not shown here), this is not necessary in the first 

half, when the moderate renewable growth can be “absorbed” by the remaining generation fleet which 

provides sufficient flexibility. 

Moving the attention on the regional results, Figure 10 shows the evolution of the nuclear share in the 

unconstrained CTAX scenario in the thirteen WITCH regions (as well as at global level for comparison 

purposes). 

 

 

Figure 10 – Regional nuclear share in the CTAX scenario. 

 

The graph shows that, for most regions, the optimization model provides results in line with the actual 

policy landscape and prospects. Nuclear generation remains zero or close to zero in the regions which 

today have neither reactors nor investments plans, i.e. EASIA and SSA, and in the regions which do have a 

small nuclear share but do not have any particular expansion plans, i.e. LACA and MENA. The nuclear share 

instead grows in the regions which have ambitious expansion plans: CHINA, INDIA, KOSAU, SASIA, and TE, 

at least until mid-century. After that date, as already discussed, nuclear does not stop growing in absolute 

terms, but it does so slower than renewables, which gain more and more market shares, so that the 

relative nuclear shares decreases. On the other hand, the nuclear share immediately starts decreasing in 

those regions which are characterized by critical nuclear prospects, such as CAJAZ and OLDEURO, where 

decarbonization is mostly carried out via renewables and, for the former, CCS. The only two regions not 

fully in line with the actual policy landscape are NEWEURO and USA, which show a marked growth despite 

the present conditions which do not suggest such an evolution for the next decades.  
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Remaining at a regional level, it is interesting to focus on the European results. Europe is naturally given by 

the combination of OLDEURO and NEWEURO, where the former substantially accounts for 90% of the total 

in terms of economic and social weight between the two. 

First of all, Figure 11 shows the evolution of the nuclear share in Europe. The main aim is naturally to 

compare the BAU and the CTAX scenarios, which essentially have the same progress, with a substantial 

constancy of the nuclear share over time. The CTAX_global_phase-out, CTAX_OECD_phase-out, and  

CTAX_OECD_switch-off scenarios, in fact, show a trivial behavior. In the latter, nuclear generation 

immediately falls to zero in 2020, while in the two phase-out scenarios (which are equivalent for Europe), 

the share gradually decreases to zero over the next decades. 

 

 

Figure 11 – European nuclear share across scenarios. 

 

Figures 12, 13, and 14 show the generation (in absolute and relative values) and the capacity mixes in the 

four selected years for the five scenarios. Two major differences emerge from the global results. First, the 

renewable penetration is considerable already in the BAU scenario, where fossils have a marginal role even 

in the absence of a climate policy. Therefore it is not surprising that these technologies dominate (with 

nuclear) the power landscape in the mitigation scenarios. Second – and related to the first – the CCS 

penetration is negligible: this is due to the low availability of storage sites and, again, to the high potential 

and technology maturity that renewables have in this region. The enormous penetration of solar and wind 

is such that a corresponding amount of storage capacity is needed to ensure grid stability, as clearly shown 

in Figure 14. 
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Figure 12 – European electricity mix over time: absolute generation. 
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Figure 13 – European electricity mix over time: relative generation shares. 

 



 
80 

 

 

 

Figure 14 – European electricity mix over time: capacity. 
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It is finally interesting to assess the economic impacts of the different scenarios, and in particular the policy 

costs. These costs are evaluated as the cumulated GDP loss over the century with respect to the cumulated 

GDP of the baseline case, considering a yearly discount factor of 2.5%. First of all, Figure 15 shows the 

policy costs in the different regions in the unconstrained CTAX scenario, which is the benchmark of the 

mitigation scenarios portfolio. 

 

 

Figure 15 – Regional policy costs in the CTAX scenario. 

 

The average global GDP loss is 8.3%. However, marked differences are found across regions. MENA and TE 

are the two regions which by far are affected most by the mitigation policies: the GDP loss amounts to 

about 23% here. This result is unsurprising, as these are the two main exporters of fossil fuels: the 

implementation of the carbon tax results in a global drop of fossil consumption and so happens to the 

economic performance of these regions, which is added to the lower domestic consumption that the policy  

allows. On the other end, OLDEURO is the region which is affected least by the mitigation policy: GDP loss is 

less than 3% here. Also in this case no major surprise can arise: the previous figures have shown that in this 

region a considerable decarbonization already takes place in the BAU scenario, i.e. the economic 

optimization per se leads to a low-carbon portfolio without the implementation of a carbon policy, which 

simply expands this tendency. 

Focusing on the economic impacts of the nuclear phase-out or switch-off policies, a previous paper (De 

Cian et al., 2011) explored this aspect highlighting a point that has already been mentioned in the previous 

pages: the innovation benefits regarding the technologies which undergo learning (signally wind and solar), 
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as well as the overall efficiency of the energy sector, result in lower costs (investment costs for renewables 

and for the energy sector in general) which essentially compensate the phase-out costs. But what happens 

at regional level? And what are the impacts of differentiated policies? Figure 16 shows the policy costs in 

the remaining three mitigation scenarios, highlighting the difference with respect to the unconstrained 

CTAX scenario in percentage points. This is done in order to abstract from the effects of the mitigation 

policy, and focus on the pure effects of the nuclear policy. 

 

 

Figure 16 – Regional policy costs in the mitigation scenarios: difference with respect to the CTAX scenario. 

 

The TE result immediately emerges in the CTAX_global_phase-out scenario: the additional GDP loss is 5.3%, 

markedly more than any other region in all the considered scenarios. Considering that the GDP loss in the 

CTAX scenario is already equal to 23%, this means an overall loss of 28%. The reason must be found in 

Figure 10: TE is the region that would invest more in nuclear, and the innovation benefits related to 

renewables are completely insufficient to compensate the absence of a technology that, in the 

unconstrained CTAX scenario, would almost reach 60% of the generation share towards mid-century. All 

the other regions are not extraordinarily affected by the global phase-out (the additional losses are within 

1%). The specific results, however, depend on the nuclear penetration that would be achieved in the 

unconstrained scenario, therefore it is not surprising that SASIA, CHINA, INDIA, and NEWEURO show the 

highest additional losses and that the three regions where nuclear would not be deployed anyway, i.e. 

EASIA, MENA, and SSA, even gain (although quite marginally) from the global phase-out. MENA, in 

particular, can benefit from the slightly higher gas demand, to be used in CCS plants. The global additional 

GDP loss is less than 0.4%, again highlighting the almost total compensation of the policy cost via the 

-5.3% 



 
83 

 

innovation benefits. To put this number in perspective, an equivalent scenario with a constraint applied to 

CCS instead of nuclear would entail a 5%-growth in the policy cost (Carrara, this issue), which is even more 

remarkable considering the lower average share over the century that CCS would achieve in the 

unconstrained policy scenarios with respect to nuclear. 

If the phase-out is limited to the OECD regions (CTAX_OECD_phase-out), a clear polarization is found. The 

OECD regions show the economic loss of renouncing nuclear, even if being the only regions which phase 

out does not cause any additional costs with respect to the global phase-out scenario (i.e. the additional 

GDP loss in the OECD regions is practically the same in the central and in the left-hand graphs). The non-

OECD regions show very marginal benefits (apart from TE, for the reasons described above), essentially 

related to the lower costs of uranium deriving from the OECD phase-out. 

Finally, the CTAX_OECD_switch-off shows the same qualitative behavior as the CTAX_OECD_phase-out 

scenario, even if results are quantitatively more marked, given the higher stringency of the technological 

constraint. The OECD regions show an additional GDP loss which is averagely around 1%, while the relative 

gain in the non-OECD regions is averagely 0.2% (almost 1% in TE), i.e. losses and gains approximately 

double. 

 

6. Conclusions 

Nuclear is expected to be one of the key technologies in the future power landscape, especially if 

mitigation policies are implemented. Its main advantage consists in generating electricity with a 

consolidated and well-known technology without emitting carbon dioxide. However, many issues, and 

especially public acceptance, hinder its deployment in many areas of the world. This is added to concerns 

about nuclear proliferation and waste management, the shortage of qualified workforce in the reactor 

construction and high or uncertain costs. 

The nuclear landscape is very polarized between OECD and non-OECD countries. The former feature the 

most numerous fleets, but most reactors are approaching the end of their operational life and 

governmental policies are in most cases against further nuclear development and only consider dedicated 

investments for the lifetime extension of existing reactors. The latter instead, apart from some regions 

which do not feature and do not intend to invest in nuclear, show higher momentum and more ambitious 

expansion plans, especially China, India, and Russia. 

This work has explored the techno-economic implications of policy-relevant nuclear scenarios, designed on 

the actual prospects for this technology in the world regions, i.e. mainly differentiating policy constraints 

between OECD and non-OECD regions. 

Results show that global nuclear generation is expected to grow in all unconstrained scenarios (BAU and 

CTAX), with a higher growth in the policy case, as in this scenario nuclear partly compensates the 

retirement of fossil plants. If constraints (phase-out and switch-off) are applied to nuclear in the OECD 

regions, nuclear growth is more moderate, and is in line with the BAU scenario. Naturally, in the 

CTAX_global_phase-out, nuclear generation globally tends to zero over few decades. The considerable 

growth in terms of generation does not correspond to an analogous marked growth in terms of share in the 

electricity mix, as the overall electricity demand grows accordingly. Indeed, in the policy scenarios the share 

does significantly increase in the first decades, but then it approximately returns to the 2015 levels, in 

correspondence of the huge expansion of renewables (notably wind and solar PV) which prevail on nuclear 
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and CCS in the mitigation portfolio. The huge expansion of variable renewable energies entails the 

deployment of a substantial storage capacity, which is needed to ensure grid stability. 

The electricity landscape is not very different in Europe. However, this region is characterized by low 

availability of CO2 storage sites and by high renewable potential and technology maturity, which hinder the 

penetration of CCS technologies. Therefore, power generation is dominated by wind and solar without 

major alternatives. 

The implementation of a mitigation policy has well-known negative economic effects (the cumulated global 

GDP loss over the century is about 8% with respect to the baseline scenario), especially in the fossil 

exporting countries (23% GDP loss in MENA and TE), as the need for decarbonization implies a strong 

reduction in fossil consumption. The additional policy costs related to the nuclear constraints, however, are 

not substantial, as most regions have an additional GDP loss of less than 0.5% (0.4% at a global level): this 

happens because the phase-out costs are almost completely compensated by  the innovation benefits in 

the renewable and the overall energy efficiency areas stimulated by the nuclear phase-out itself. TE shows 

an additional 5%-loss, being the region that would have the highest nuclear penetration in the 

unconstrained scenarios. If constraints are applied to the OECD regions only, no additional losses are found 

here with respect to the global phase-out scenario, while the non-OECD regions slightly benefit from the 

lower uranium costs. The CTAX_OECD_switch-off scenario simply exacerbates these results: the average 

additional GDP loss in the OECD regions and the average GDP gain in the non-OECD regions approximately 

double. 
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